A ickaro

HP-UX Reference
Vol. 3: Sections 3,4,5,7,and 9

P-UX

HP-UX Reference
Vol. 3: Sections 4,5,7, and 9

for

HP Part Number 09000-90008

© Copyright 1985, 1986 Hewlett-Packard Company

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this
document may be photocopied, reproduced or translated to another language without the prior written consent of Hewlett-
Packard Company. The information contained in this document is subject to change without notice.

Restricted Rights Legend
Use, duplication or disclosure by the Government is subject to restrictions as set forth in paragraph (b)(3)(B) of the Rights
in Technical Data and Software clause in DAR 7-104.9(a).

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only. Additional
copies of the programs can be made for security and back-up purposes only. Resale of the programs in their present form
or with alterations, is expressly prohibited.

© Copyright 1980, 1984, AT&T, Inc.
© Copyright 1979, 1980, 1983, The Regents of the University of California.
This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the

Regents of the University of California.

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Printing History

New editions of this manual will incorporate all material updated since the previous edition.
Update packages may be issued between editions and contain replacement and additional pages
to be merged into the manual by the user. Each updated page will be indicated by a revision
date at the bottom of the page. A vertical bar in the margin indicates the changes on each page.
Note that pages which are rearranged due to changes on a previous page are not considered
revised.

The manual printing date and part number indicate its current edition. The printing date changes
when a new edition is printed. (Minor corrections and updates which are incorporated at reprint
do not cause the date to change.) The manual part number changes when extensive technical
changes are incorporated.

July 1985...Edition 1. This manual replaces HP-UX Reference Manual 09000-90007 and doc-
uments HP-UX Release 5.0 for Series 200, 300 and 500.

November 1985...Edition 2. Updated from Edition 1 to reflect Series 200/300 HP-UX Release
5.1 changes. Several omitted pages in Edition 1 were also added.

June 1986...Edition 3. Update 1 incorporated.
September 1986...Edition 3 Update 1. This update reflects additions and changes incorporated

in Series 500 HP-UX Release 5.1. Added command autobackup(1M) and core files support
(core(5)), changed blocksize limitations for SDF file formats, and fixed various bugs.

NOTICE
The information contained in this document is subject to change without notice.
HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable

for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance,
or use of this material.

WARRANTY

A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

ii

TABLE OF CONTENTS

1. Commands

introduction to Section 1
. search and print process accounting files
... debugger
simple text formatter
AAININ Lottt ettt sae e e create and administer SCCS files
archive and library maintainer
convert archives to new format
........................... assembler for MC68000
interpret ASA carriage control characters
execute commands at a later time
AEETIIL eveiniiiiiiee e ettt ettt e ettt et et ae e e general purpose asynchronous terminal emulation
atrans .. translate assembly language
awk text pattern scanning and processing language
DAINET ..eeiiiiiiiieeie ittt e s s ea e e e ae e aebe e s besaeeeeteesrreeeaneenaaans make posters in large letters
............. extract portions of path names
arbitrary-precision arithmetic language
big diff
... big file scanner
bifchmod . .. change mode of a BIF file
bifchown . change file owner or group
.. copy to or from BIF files
report number of free disc blocks
........................... find files in a BIF system

Bell file system consistency check and interactive repair
Bell file system debugger
list contents of BIIF directories
make a BII' directory
... construct a Bell file system
............. remove BIF files or directories
compiler/interpreter for modest-sized programs
print calendar
reminder service
concatenate, copy, and print files
C program beautifier, formatter
............................... C compiler
... change working directory
..... C, FORTRAN, Pascal symbolic debugger
change the delta commentary of an SCCS delta
generate C flow graph
change program’s internal attributes
... change mode
change file owner or group
change default login shell
clear terminal screen
.............................. compare two files
.. filter reverse linefeeds and backspaces
COITIL .vvenriiienie ettt ea et s st s b st e b st b e e ebcbe et select/reject common lines of two files
. compress and uncompress files, and cat them
copy, link or move files
copy file archives in and out

intro(1)
acctcom .

bifmkdir
bifmkfs ...

CDD ceevreeeriirreneree s eninees C language preprocessor
CTOMEAD ittt ettt e et e e ettt e e et e s ne e eh e eaeeenreeaen user crontab file
csh C shell
CEAGS +eenveeeureeruterterseitertte s te et b e e aeae s st eeeae st b eentta e st et e est e e e eaa eeteeteeereeeana e e treeasseeenaeensaeenneetn create a tags file

-1-

Table of Contents

.. call another HP-UX system
cut out selected fields of each line of a file
..... generate C program cross-reference
print and set the date
................................ desk calculator
. convert, reblock, translate, and.copy a (tape) file
make a delta (change) to an SCCS file
remove nroff/troff, tbl, and eqn constructs
differential file comparator
3-way differential file comparison
... mark differences between files
. directory difference comparison

summarize disk usage
echo (print) arguments
text editor
text editor (variant of ex for casual users)
....................... enable/disable LP printers
. set environment for command execution
report error information on last failure

EX tiueeeuteeentee bt e e e bt e et e e b e e ae s e hae st e e it een e e bt e s be s bt e e haeea s e e ea b et hte e s e eeabeesaaennreesntenstaetea text editor commands
expand .. expand tabs to spaces, and vice versa
expr evaluate arguments as an expression

see fc
. factor a number, generate large primes
FORTRAN 77 compiler
determine file type
................................... find files

. create message catalog file for modification
find strings for inclusion in message catalog
fixman fix manual pages for faster viewing with man(1)
fold long lines for finite-width output device
. generate a formatted message-catalog file

findmsg

gencat

get .. get a version of an SCCS file
BOEODE ittt ettt et e e b ae e e sttt e e tte e eaneeeanaeann parse command options
getprivgrp get special attributes for group
BTED teuveevreeueerirteenuteaseterseesaseente teassessaee seensaesaeaanste s eaanae et e e et teesbaenneeeraene search an ASCII file for a pattern
groups show group memberships

head ... give first few lines of file
help ask for help
hostname set or print name of current host system

handle special functions of HP 2640 and 2621 series terminals
.. find hyphenated words
print user, group IDs and names
..................... use findstring output to insert calls to getmsg
remove a message queue, semaphore set, or shared memory id
. report inter-process communication facilities status
relational database operator
... terminate a process
. indicate last logins of users and teletypes
........................... link editor

... remind you when you have to leave
. generate programs for lexical analysis of text
copy to or from LIF files
write LIF volume header on file
.............................. list contents of LIF directory

Table of Contents

.................. iereeeresseessessiesrsssessessseneenenneeee. PeName LI files

............ . rreesterierierseenenen. Temove a LIF file
TINE ceieecveeeieeeere e read one line from user input
object file link information utility
............ ... a C program checker/verifiér
reserve a terminal

sign on

get login name

..................... ... find ordering relation for object library

...... . . . send or cancel requests to an LP line printer
... print LP status information

list contents of directories
. list device drivers in the system
Macro processor
machid . provide truth value about your processor type
INAIL Lot e e ... send mail to users or read mail
mailx ettt e e et e she e s be e ea s e s be e bt e s r e sa e e s b e e s e ateas send and receive mail
TBKE eeiireiiieieeeenieeeteeesite et te et eesnte st ee b e e et satesreeenee e e seeesbeesnneesnee maintain, update, recompile programs
' on-line manual command
. initialize hard disc, flexible disc, or cartridge tape media

mediainit

mesg permit or deny messages to terminal
mkdir .. heeeree e tenae et et e e sta e et e e s r et e ra e e et e satesane s sateenreeiean make a directory
mkstr extract error messages from C source into a file

print documents formatted with MM macros
.................. file perusal filter for crt viewing
magnetic tape manipulating program
log in to a new group
print news items
run a command at low priority
line numbering filter
print name list (symbol table) of object file
run a command immune to hangups, logouts, and quits
TITOMT Lottt ettt sttt e b st b et b e e e b e be e bbb e eere b format text
..... . octal and hexadecimal dump
compress and expand files
. Personal Applications Manager, a visual shell
............................. change login password
merge lines in one or more files
.................. Pascal compiler
print files
... preallocate disc storage
.......... display profile data
print and summarize an SCCS file
report process status
create permuted index
working directory name
. interactive IMAGE database access
rational FORTRAN dialect
TEV eteteetetteeareesteeeseessseeesseesenseesaeeesaaesee e st e s R e e aeea e he e st e eae e eat e as e e b be e neenbee et e senesanteebaens reverse lines of a file
get HP-UX revision information
remove filés or directories
remove a delta from an SCCS file
remove extra new-line characters from file
... execute process with real-time priority
. print current SCCS file editing activity

prealloc

prof ..

rtprio
sact ..

ey

Table of Contents

scesdiff compare two versions of SCCS file
sed stream text editor
sh shell, the standard command programming language
size .. object file size
sleep ... suspend execution for an interval
SID e set printer options

sort ... sort and/or merge files
spell find spelling errors
1530) 11 OO UU PP PPN split a file into pieces
SSP .nen remove multiple line-feeds from output
SEFINIES cvvieeiiir i find printable strings in binary file
strip remove symbols and relocation bits
stty set the options for a terminal port

become another user
print checksum and block count of a file
... update the super block
... set tabs on a terminal
deliver the last part of a file
tape file archiver
format tables for nroff or troff
CS/80 Cartridge Tape utility
............................ pipe fitting
condition evaluation command
.... time a command
. update access/modification/change times of file
query terminfo database
translate characters
provide truth values
terminal dependent initialization
topological sort
get the terminal’s name
do underlining
set file-creation mode mask
................. ... print name of current HP-UX version
.............................. .. undo a previous get of an SCCS file

...... report repeated lines in a file
................... unit conversion program
unpack cpio archives from HP media

uucp e .. HP-UX to HP-UX copy; file transfer
uuls list spooled uucp transactions grouped by transaction
uusnap ... show snapshot of the UUCP system
uustat ... uucp status inquiry and job control

public HP-UX-to-HP-UX file copy
HP-UX to HP-UX command execution
validate SCCS file
visual text editor

VIS totrereet ettt st s make unprintable characters in a file visible or invisible

await completion of process
WC ... word, line, and character count
WHAE ettt identify files for SCCS information
whereis . . locate source, binary, and/or manual for program
WHO e e which users are on the system
WHIOAINE ©eeveieiiiienitee ettt ettt eane s print effective current user id
write interactively write (talk) to another user
Xargs construct argument list(s) and execute command

N/

Table of Contents

FACC ceriritiitte it et e ettt ebe e sbe e e ae e e e e e ese e e b b e e b e s h b e e a et ett e e b e e beent e b et esaeentenanen yet another compiler-compiler

1M. System Maintenance Utilities

ACCEPE teiiiitiiiiiiie ittt ee et e ettt e e et e e s s e e e s b e et s sat e e abe e e e aaeesrbaeeenns allow or prevent LP requests
acct overview of accounting and miscellaneous accounting commands
acctems . command summary from per-process accounting records

ACCECON wiviiiiiiiiiiiiieeiires sttt eeeabt e e st e e e s bbaeeessbaaeeaasbeesanbeeessbbenssseesssasaensbeeesanbeesennaees connect-time accounting
acctmerg merge or add total accounting files
acctpre process accounting
acctsh shell procedures for accounting

DACKUD eveiiiitireeiitestire ettt et eete et st ae e b e srees st esbaassess et en s benaenbensaenes backup or archive file system

DIC oot b system initialization shell scripts
captoinfo . . convert a termcap description into a terminfo description
catman create the cat files for the manual
chroot change root directory for a command
chsys change to different operating system or version
clri clear i-node

clrsve . . clear x.25 switched virtual circuit
COMEG woniiitiiiieiet ettt ettt e bbb et b e e e n st e b s e et configure an HP-UX system
cpset . install object files in binary directories
clock daemon

device name

AE e e e et e e aa e be e e ae e e e baaerseerreearesenteenee report number of free disk blocks
ISKUSE +ovveeiiniiiiiiciciie ettt generate disc accounting data by user ID
fsck file system consistency check, interactive repair
fsclean ... determine shutdown status of specified file system
fsdb file system debugger

fwtmp manipulate wtmp records
getty . . set the modes of a terminal
BEEX2D ittt e bbbt et ekt e bt s bt e saeesreeeanaesheseseesaten get x.25 line
init process control initialization

install install commands
kermit KERMIT-protocol file transfer program
KIIALL <ottt e st et send signal to all user processes
link exercise link and unlink system calls

Ipadmin .. administer the LP spooling system
Ipsched start/stop the LP request scheduler and move requests
makekey generate encryption key

make device files
TNKES ©oveiiiiie ettt et steene construct a file system
mkKlp .. . configure the LP spooler system
INKII0A ettt ettt ettt st s e e et be st e st e st e st e st e sae st e e ebae e ssesbensaesaesaenraenne create special, fifo, files

mount
mvdir
ncheck ..
newfs
opx25 .
osck

. mount and unmount file system
move a directory
. generate names from i-numbers
construct a new file system
execute HALGOL programs
check integrity of OS in SDF boot area(s)
copy, create, append to, split operating system
................ mark SDF OS file as loadable/unloadable

.. operating system manager package description
password/group file checkers
................... reboot the system

-5-

Table of Contents

revek check internal revision numbers of HP-UX files
rootmark . mark/unmark volume as HP-UX root volume
TUDACCE 1eivviiuiiniiiiiitieii ettt es b e s s s b e b s b s s sa e s e s e s run daily accounting
sdfinit initialize Structured Directory Format volume
setmnt establish mnttab table
setprivgrp . . set special attributes for group
SHUBAOWIL 1.ttt ettt e re et e eb e e st e saeesaaesnnes terminate all processing
SEODSYS wvveiriuriiiiiieriie e stop operatmg system with optional reboot

swapon ... enable additional devices for swapping and paging
‘syncer periodically sync for file system integrity
tic ... terminfo compiler
tunefs tune a file system
UCONIG oveeetiirieieeitertee ettt ettt ste et e e e st e s ae e e sae e s taebeessaaesse ssaaenstesnessesssannssennnns system reconfiguration
umodem XMODEM protocol file transfer program

terminfo de-compiler
uucico uucp copy in and copy out
uuclean .. uucp spool directory clean-up
TUSUD ettt ettt ste e s eae e et e e e seaesa bt e sabeebeebee s enaesaeeeseesae e saennneeenren monitor uucp network
uucp command execution
write to all users
which users are doing what

2. System Calls

ACCESS 1uveireetiitreseiitet e ettt et b e s h e a s Re e a R e s e b bt eae b s determine accessibility of a file
alarm ... set process’s alarm clock
brk change data segment space allocation
chdir rreeeeenaneas change working directory
CHINOA ittt b e et aenre e earees change access mode of file
chown change owner and group of a file

chroot change root directory
CIOSE .euiiiiiiete ettt ettt sttt et be e bbbt e bt et e tesba e bt et e eaeenben b aeaesabebeentaenee close a file descriptor
creat . create new file, rewrite existing file
dup . duplicate an open file descriptor

duplicate an open file descriptor
ems Extended Memory System
errinfo error indicator
error indicator for system calls
......................... execute a file
terminate process
............. file control
create a new process

fsync synchronize a file’s in-core state with that on disc
ftime . get date and time more precisely
EEETOUDS 1vevviiuriiiiniiritiiitteiite et e sbr e ban et bbe s e sab b e s s bt e sabeae s seabeseaabteesanesssnbnseseabraes get group access list
EEEhOSENAINE ...ooviiiiieiiiiiiiiii et get name of current host
ZELILIMET Lot get/set value of interval timer
getpid get process, process group, and parent process IDs
BEEDIIVEID eveiiiirireeieeiriiestterites it et aeeser e et eesteessaaessesenaassseesaaensnraensassaens get/set special attributes for group
gettimeofday get/set date and time
getuid get real/effective user, real/effective group IDs
ioctl control device

send signal to process(s)
link to a file

-6-

Table of Contents

lockf provide semaphores and record locking on files
ISEEK voviviiietetieiie st move read/write file pointer; seek
memadvise advise OS about segment reference patterns
memallc allocate and free address space
MEMCHIMA ittt ste e e et ebe e bt aeeannes change memory segment access modes
memlck lock/unlock process address space or segment
memvary modify segment length
mkdir create a directory file
make directory, special or ordinary file
mount a file system
message control operations
............. get message queue
... Imessage operations
..... change priority of a process
open file for reading or writing
suspend process until signal
......... create an inter-process channel
. lock process, text, or data in memory

........... preallocate fast disc storage
profil execution time profile
ptrace process trace
read read from file
TEDOOE .eeueitiiiiitieerieieeie et st eeet s e st e e et e e e beebaeseseeereesesererbe et e tesbassaeste s s resbenssansaenrasaen reboot the system
TINAIT eeiiiiiiienie ettt ne ettt e et et eeaeete e taeas b esbeeraassessesasessesbessaessessasseessasssesaessann remove a directory file
rtprio change or read real-time priority

select
semctl ..

synchronous I/O multiplexing
semaphore control operations
semget . get set of semaphores
Semop semaphore operations
SELEIOUPS ..vvvevrvvveeanes .. set group access list

sethostname set name of host cpu
setpgrp set process group ID
setuid set user and group IDs

shmet] .. . shared memory control operations

shmget . . get shared memory segment
shmop .. shared memory operations
sigblock block signals
signal set up signal handling for program

sigpause ... automatically release blocked signals and wait for interrupt

SIZSEEIMNASK .viveviieiiiiiiiiicieci e et s s set current signal mask
sigspace .. . assure sufficient signal stack space
sigvector software signal facilities
stat get file status

stime set time and date
BEEY cveereee e ettt ettt e e e e e se b e e e e ar e e e e e e eabteaeebees s erseeearbraeeetnaeeabanaeeebeeeeenbreeeantaeains control device
swapon . add a swap device for interleaved paging/signalling
update the super block
get time
get process and child process times
hardware trap numbers
truncate a file to a specified length

trapno
truncate ..

WHITE eeeeiecireee ettt r ettt e e e s be e etr e saae et e e saessn e eeateasnseessaeasaesssananteesaensen get and set user limits
..... get and set file creation mask
unmount a file system

010 E: 441 N get name of current HP-UX system

-

Table of Contents

UDJDK ©eonieeeiinieerereeseeete et eest et e te e e sreesee e st s aeesaeseeesunessanessseenasesnneenan remove directory entry; delete file
get file system statistics
.. set file access and modification times
viork ..oeveiviiniennes .. spawn new process in a virtual memory efficient way

............... advise system about backing store usage
advise OS about backing store devices
wait for child process to terminate
write on a file

convert between long and base-64 ASCII
. generate an IOT fault

integer absolute value
program verification
convert ASCII to numbers
bessel functions
bsearch binary search on a sorted table
catread . MPE/RTE-style message catalog support
CLOCK ettt ettt ettt et e e e e aa e ete e ae e et ee e naenee report CPU time used
conv .. character translation
crypt DES encryption
ctermid ... generate file name for terminal
ctime . convert date and time to ASCII

(51024 LI OO OO PR RUROTRN character classification
curses CRT screen handling and optimization routines
cuserid character login name of the user
dial establish an out-going terminal line connection

directory
drand48
ecvt ...

... directory operations
. generate uniformly-distributed pseudo-random numbers
output conversion
last locations in program
error function and complementary error function
exponential, logarithm, power, square root functions
... close or flush a stream
... stream file status inquiries
.. absolute value, floor, ceiling, remainder functions
. open or re-open a stream file; convert file to stream
buffered binary input/output to a stream file
split into mantissa and exponent
........ reposition a stream

...... walk a file tree

log gamma function
get character or word from stream file
. get pathname of current working directory
BOEEIIV 1oiiiiiieeiiie ettt ee et sba e e s b e e st e eannes value for environment name

getfsent . get file system descriptor file entry
getgrent get group file entry
getlogin get login name
getmsg get message from a catalog

getopt
getpass
getpw ...
getpwent .

get option letter from argv
.... read a password
.. get name from UID
get password file entry

8-

Table of Contents

get a string from a stream file
access utmp file entry
gpio_get__status return status lines of GPIO card
BPIOSEECEL ettt et et s saa e set control lines on GPIO card
hpib__abort stop activity on specified HP-IB bus
DPID__DUS__SEALUS uveeeviiieneeeierieiiienesesesaee et sece st sae s esra e aesae s e sans return status of HP-IB interface
hpib__card__ppoll_resp .. . control response to parallel poll on HP-IB
hpib__eoi_ctl control EOI mode for HP-IB file
hpib_io perform I/O with an HP-IB channel from buffers
hpib__pass_ctl . change active controllers on HP-IB
hpib_ppollceueee. conduct parallel poll on HP-IB bus
hpib__ppoll_resp_ctl control response to parallel poll on HP-IB
hpib_ren__ctl control the Remote Enable line on HP-IB
hpib_rqst_srvce allow interface to enable SRQ line on HP-IB
hpib_send _cmnd ... send command bytes over HP-IB
NPID_SPOIL <.t e n conduct a serial poll on HP-IB bus
hpib__status_wait wait until the requested status condition becomes true
hpib__wait_on__ppoll wait until a particular parallel poll value occurs
hsearch manage hash search tables
hypot Euclidean distance
INIEETOUDS «eeevvieureeireeereeirtereiteeiteesteesaessteeseeeceseesseassnesssesssaesassesssassssesssessseensesnsen initialize group access list
intrapoffccooveeeeenne disable/enable integer trap handler
T0DUISE weviiiiiiiiiicccc e perform low-overhead 1/O on an HP-IB channel
io—eol_ctl set up read termination character on special file
io_get__term__reason determine how last read terminated
io_interrupt_ctl enable/disable interrupts for associated eid
io_on__interrupt device interrupt (fault) control
HOT@SEE vviviiieiriiett it sa e reset an I/O interface
io_speed__ctl . inform system of required transfer speed
io__timeout__ctl establish time limit for I/O operations
TOWIAER__CEL weeeeiiee e st sne e set width of data path

13tol convert between 3-byte integers and long integers
JANGINTO .eveiiieeiiie e e e e et eeeaaeenae s NLS native language information
logname return login name of user
Isearch linear search and update
malloc .. main memory allocator
matherr ... mathematical error handling
TTLEITIOLY +evvevtirreeuuenstesienueestenseessessesseesessesstesseeesessasnsessesssansesssessaessensensensesssessessesssensessenns memory operations
mktemp make a unique file name
INOTHBOT wetiiieieiiniiiiiit ittt et et sre e st emee e s bae s sneeseesneesenesmnes st eemneeenbesnnnn prepare execution profile
nl_conv . translate characters for use with NLS
nl_ctype classify characters for use with NLS
nl_string . non-ASCII string collation used by NLS

TIIESE eeeetiiieeite e ettt e e s et e e ae e s etaeeeabb e e e eeanaee s snnaaeesenaeeennes ... get entries from name list

DEITOT .vutuiuiiueetesteeseeseesteaeeueeuteseebesbe st es et s be e e ehebeasaeses e s be st e st e b et estemtebeabeneeneseneasenansen system error messages
popen . initiate pipe I/O to/from a process
printf output formatters

printmsg print formatted output with numbered arguments
putc put character or word on a stream
putenv change or add value to environment
putpwent write password file entry
puts put a string on a stream file
QSOTT ettt ittt ettt ettt st e e e bbb e st e et b e e e b bt e e e et e e e e et t e e e e eab bt e e s nat e e e breeeesnbeeeeraee et b eenntae e nan quicker sort
TANA oottt st st st e st aene e e e e nes ... random number generator
regemp compile and execute regular expression

Table of Contents

scanf ... formatted input conversion, read from stream file
SEEDUL 1ttt assign buffering to a stream file
SEEJITID +euveeueeiireerieeerteesteesitessteestte e et e e e st e e e e e et anae e e et e e aee st e s ae e st e nsaaenseeenseeenseeane e e st eannennbeenaaens non-local goto
sinh hyperbolic functions
. suspend execution for interval
access long integer data in machine-independent manner
software signals
standard buffered input/output stream file package
stdipc stamdard inter-process communication package
SEFINE v ... character string operations
strtod convert string to double-precision integer
strtol convert string to integer

SWAD 1ttt s h e s bbb s as bt eaesaeen swap bytes
SYSEEINL ettt ettt et e et e et e e e aa e n e e an e esneas issue a shell command
termeap access terminal capabilities in termcap(5)

.......................... create a temporary file

. create a name for a temporary file

trig trigonometric functions
ESBATCIL 1ottt ettt e e ettt s st e e ar e e e naeeennaan manage binary search trees
BEYNIAINIE .oeneieiiietieeiteeree et e et e et ee et e s beete e e be s te e teesanessaesnneessteesanaessaeeenseanssannnaeens find name of a terminal
ttyslot ... find current user slot in utmp file
ungetc push character back into input stream
VPEINEE oo print formatted output from varargs argument list

4. Special Files

CS/80 cartridge tape access
direct disc access
graphics information for crt graphics devices
hpib hpib interface information
iomap physical address mapping
LD e printer information
core memory
asynchronous serial modem line control
. magnetic tape interface and controls
... null file ("bit bucket”)

et et ettt et be e ettt e teh bt et s et e e et et e e b e e eeeht et e ebe e e shaae e e e bt s e e e bt e e sentbbeesesbaeeebaaee et pseudo-terminal driver
SEEFVO oottt ettt ae e s version 6/PWD-compatibility terminal interface
general terminal interface
controlling terminal interface

assembler and link editor output
. per-process accounting file format
......................... archive file format

.... Bell Interchange Format file utilties

................ list of file systems processed by fsck
collating sequence tables for 8-bit NLS character sets
. collating sequence tables for 16-bit NLS character sets
format of core image file
format of cpio archive
dialup security control

Table of Contents

dir SDF directory format
disktab disc description file
errfile system error logging file
fs format of system volume
FSPEC weereteiireeet sttt format specification in text files
gettydefs . speed and terminal settings used by getty(1M)
group group file
inittab control information for init(1M)
T s LTS T OO PN format of an i-node
ISSUE uvveruteeeuieeerreesteesteestaeseee et e eaee s b tessbe s esbesseese s s es e e eant e e bb e bt e s e b e e bt b e e s aesabesae e issue identification file
LE ettt e et e et e nee Logical Interchange Format description
magic . . magic numbers for HP-UX implementations
TIASEET +veeeeeuiiieireeeeeeeiree s e st e e st e she e e aecebesae e s ne s eas bt saae e e e e e esne et master device information table

create a special file entry
mounted file system table
HP-UX machine identification

nlist . et ee e enanes ... nlist structure format
DASSWA 11veeeeeriiietetiitieretieeiteee et ee st et e e ste e shaesaee e s beena e e e ahe e e aa et ehr e e aee e reeenaaeea Rt e esee e nesneeesheebesrnsenas password file
privgrp privileged values format
profile set up user’s environment at login time

ranlib .. table of contents format for object libraries

scesfile format of SCCS file
term ... compiled term file format
terminfo ... -terminal capability data base
ttytype . data base of terminal types by port
utmp utmp and wtmp entry format
6. Games

No games are currently supported.

7. Miscellaneous Facilities

ASCHL veeemrrerurterte e ettt ettt ettt e ab e et e e ae bt e e b e e b s e e neeeeseseneeenas map of ASCII character set
environ user environment
fentl file control options
BIET e file system hierarchy

RPINIS ettt et st ettt e e e aneeenn e Native Language Support model
KANAB ...eiiiiiiiiiiietee ettt e map of KANAS character set used by NLS
language identification variable used by NLS
. macros for formatting entries in this manual
............................... math functions and constants

..... the MM macro package for formatting documents
regexp regular expression compile and match routines
roman8 ROMANS character set used by NLS
data returned by stat/fstat system call
conventional device names
primitive system data types
.. machine-dependent values
. handle-variable-argument list

values ..
varargs ...

“11-

Table of Contents

9. Glossary

N

INTRO (3) INTRO(3)

NAME

intro - introduction to subroutines and libraries

SYNOPSIS

#include <stdio.h>
#include <math.h>

HP-UX COMPATIBILITY

Level: The level given is the level for which the library is available, not the level at which the
linkable object code appears. The supporting host will contain appropriate libraries
for HP-UX/RUN ONLY and HP-UX/NUCLEUS systems.

Origin: System III, System V, UCB

DESCRIPTION

This section describes functions found in various libraries, other than those functions that directly
invoke HP-UX system primitives, which are described in Section 2 of this volume. Certain major
collections are identified by a letter after the section number:

(3C) These functions, together with those of Section 2 and those marked (3S), constitute the
Standard C Library libc, which is automatically loaded by the C compiler, ¢c(1). The link
editor ld(1) searches this library under the -lc option. Declarations for some of these func—
tions may be obtained from #include files indicated on the appropriate pages.

(3M) These functions constitute the Math Library, litbm. They are automatically loaded as
needed by the FORTRAN compiler f77(1). They are not automatically loaded by the C
compiler, cc(1); however, the link editor searches this library under the -lm option.
Declarations for these functions may be obtained from the #include file <math.h>.
Several generally useful mathematical constants are also defined there (see math(5)).

(3N) These functions constitute the networking library, libn. The link editor searches this
library under the —In option. Declarations for these functions can be obtained from the
#include file <stdio.h>.

(3S) These functions constitute the “standard I/0 package” (see stdio(3S)). These functions are
in the library libe, already mentioned. Declarations for these functions may be obtained
from the #include file <stdio.h>.

(3X) Various specialized libraries. The files in which these libraries are found are given on the
appropriate pages.

DEFINITIONS

FILES

A character is any bit pattern able to fit into a byte on the machine. The null character is a
character with value 0, represented in the C language as *\0’. A character array is a sequence of
characters. A null-terminated character array is a sequence of characters, the last of which is the
null character. A string is a designation for a null-terminated character array. The null string is
a character array containing only the null character. A NULL pointer is the value that is
obtained by casting O into a pointer. The C language guarantees that this value will not match
that of any legitimate pointer, so many functions that return pointers return it to indicate an
error. NULL is defined as 0 in <stdio.h>; the user can include an appropriate definition if not
using <stdio.h>.

/lib/libc.a
/lib/libm.a
/lib/libn.a

SEE ALSO

intro(2), stdio(3S), math(5).
ar(1), ce(1), £77(1), 1d(1), lint(1), nm(1), ranlib(1), intro(2), stdio(3S).

DIAGNOSTICS

Functions in the C and Math Libraries (3C and 3M) may return the conventional values 0 or

Hewlett-Packard -1- July 2, 1985

INTRO (3) INTRO(3)

+HUGE (the largest-magnitude single-precision floating—point numbers; HUGE is defined in the
<math.h> header file) when the function is undefined for the given arguments or when the value
is not representable. In these cases, the external variable errno (see errno(2)) is set to the value
EDOM or ERANGE.

WARNING

Many of the functions in the libraries call and/or refer to other functions and external variables
described in this section and in section 2 (System Calls). If a program inadvertantly defines a
function or external variable with the same name, the presumed library version of the function or
external variable may not be loaded. The lint(1) program checker reports name conflicts of this
kind as “multiple declarations” of the names in question. Definitions for sections 2, 3C, and 3S
are checked automatically. Other definitions can be included by using the -1 option (for example,
-1m includes definitions for the Math Library, section 3M). Use of lint is highly recommended.

Hewlett—Packard -2- July 2, 1985

AB4L(3C) A64L(3C)

NAME
ab4l, 164a - convert between long integer and base-64 ASCII string

SYNOPSIS
long a641 (s)
char =*s;

char #l64a (1)
long 1;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
These functions are used to maintain numbers stored in base-64 ASCII characters. This is a
notation by which long integers can be represented by up to six characters; each character
represents a “digit” in a radix-64 notation.

The characters used to represent "digits” are . for 0, / for 1, O through 9 for 2-11, A through Z
for 12-37, and a through z for 38-63.
The leftmost character is the least significant digit. For example,
a0 = (38 x 64°) + (2 x 64') = 166
A64l takes a pointer to a null-terminated base-64 representation and returns a corresponding

long value. If the string pointed to by s contains more than six characters, a64! will use the first
six.

L64a takes a long argument and returns a pointer to the corresponding base-64 representation.
If the argument is 0, {64a returns a pointer to a null string.

BUGS
The value returned by l64a is a pointer into a static buffer, the contents of which are overwritten
by each call.

Hewlett—Packard -1- July 2, 1985

ABORT(3C) ABORT (3C)

NAME
abort - generate an 10T fault

SYNOPSIS
int abort ()
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V
DESCRIPTION

Abort first closes all open files if possible, then causes the SIGIOT signal to be sent to the process.
This usually results in termination with a core dump.

It is possible for abort to return control if SIGIOT is caught or ignored, in which case the value
returned is that of the kll(2) system call.

SEE ALSO
adb(1), exit(2), kill(2), signal(2).

DIAGNOSTICS
If SIGIOT is neither caught nor ignored, and the current directory is writable, a core dump is
produced and the message “abort - core dumped” is written by the shell.

Hewlett—Packard -1- July 2, 1985

ABS(3C)

NAME
abs - return integer absolute value

SYNOPSIS
int abs (i)
int i;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V
DESCRIPTION
Abs returns the absolute value of its integer operand.

HARDWARE DEPENDENCIES
Series 200/500 and Integral Personal Computer:
The largest negative integer recognized by the system returns itself.

SEE ALSO
floor(3M).

Hewlett—Packard -1-

ABS(3C)

July 2, 1985

ASSERT (3X)

NAME
assert - verify program assertion

SYNOPSIS
#include <assert.h>

assert (expression)
int expression;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION

ASSERT (3X)

This macro is useful for putting diagnostics into programs. When it is executed, if ezpression is

false (zero), assert prints

‘“Assertion failed: expression, file zyz, line nnn’

on the standard error output and aborts. In the error message, zyz is the name of the source file

and nan the source line number of the assert statement.

Compiling with the preprocessor option -DNDEBUG (see cpp (1)), or with the preprocessor con-
trol statement ‘‘#define NDEBUG” ahead of the ‘“‘#include <assert.h>" statement, will stop

assertions from being compiled into the program.

SEE ALSO
cpp(1), abort(3C).

Hewlett—Packard

July 2, 1985

“

ATOF (3C) ATOF (3C)

NAME
atof, atoi, atol — convert ASCII to numbers

SYNOPSIS
double atof (nptr)
char *nptr;
int atoi (nptr)
char *nptr;
long atol (nptr)
char *nptr;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System III

DESCRIPTION
These functions convert a string pointed to by npir to floating, integer, and long integer represen-
tation respectively. The first unrecognized character ends the string.

Atof recognizes an optional string of tabs and spaces, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional e or E followed by an optionally signed
integer.

Atoi and atol recognize an optional string of tabs and spaces, then an optional sign, then a string
of digits.

HARDWARE DEPENDENCIES
Series 200,/500:
Atoi and atol are identical.

SEE ALSO
scanf(3S).

BUGS
There are no provisions for overflow.

Hewlett-Packard -1- November 19, 1985

BESSEL (3M) BESSEL (3M)

NAME
j0, j1, jn, y0, y1, yn - Bessel functions
SYNOPSIS
#include <math.h>
double jO (x)
double x;
double j1 (x)
double x;
double jn (n, x)
int n;
double x;
double y0 (x)
double x;
double y1 (x)
double x;
double yn (n, x)
int n;
double x;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
JO and j1 return Bessel functions of z of the first kind of orders 0 and 1 respectively. Jn returns
the Bessel function of z of the first kind of order n.

Y0 and y1 return the Bessel functions of z of the second kind of orders 0 and 1 respectively. Yn
returns the Bessel function of z of the second kind of order n. The value of £ must be positive.

DIAGNOSTICS
Non—positive arguments cause y0, yI and yn to return the value -HUGE and to set errno to
EDOM. They also cause a message indicating DOMAIN error to be printed on the standard error
output; the process will continue.

Arguments too large in magnitude cause j0, jI, y0 and yI to return zero and to set errno to
ERANGE. In addition, a message indicating TLOSS error is printed on the standard error out—
put.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
matherr(3M).

Hewlett-Packard -1- July 9, 1985

BSEARCH (3C) BSEARCH (3C)

NAME

bsearch - binary search a sorted table

SYNOPSIS

char sbsearch ((char #) key, (char #) base, nel, sizeof (xkey), compar)
unsigned nel;
int (*compar)();

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

Bsearch is a binary search routine generalized from Knuth (6.2.1) Algorithm B. It returns a
pointer into a table indicating where a datum may be found. The table must be previously sorted
in increasing order according to a provided comparison function. Key points to a datum instance
to be sought in the table. Base points to the element at the base of the table. Nel is the number
of elements in the table. Compar is the name of the comparison function, which is called with
two arguments that point to the elements being compared. The function must return an integer
less than, equal to, or greater than zero as accordingly the first argument is to be considered less
than, equal to, or greater than the second.

EXAMPLE

The example below searches a table containing pointers to nodes consisting of a string and its
length. The table is ordered alphabetically on the string in the node pointed to by each entry.

This code fragment reads in strings and either finds the corresponding node and prints out the
string and its length, or prints an error message.

#include <stdio.h>
#define TABSIZE 1000

struct node { /* these are stored in the table %/
char *string;
int length;

h

struct node table[TABSIZE]; /* table to be searched %/

struct node *node_ptr, node;
int node_compare(); /* routine to compare 2 nodes */
char str_space[20]; /* space to read string into %/

node.string = str__space;
while (scanf("%s”, node.string) != EOF) {
node_ptr = (struct node *)bsearch((char *)(&node),
(char *)table, TABSIZE,
sizeof(struct node), node_compare);
if (node_ptr != NULL) {
(void)printf(“string = %20s, length = %d\n”,
node__ptr—>string, node__ptr—>length);
} else {

Hewlett-Packard -1- July 2, 1985

BSEARCH (3C) BSEARCH (3C)

(void)printf("not found: %s\n", node.string);

}

}

/%
This routine compares two nodes based on an
alphabetical ordering of the string field.

*/

int

node__compare(nodel, node2)
struct node *nodel, *node2;

{
}

return stremp(nodel—>string, node2—>string);

NOTES
The pointers to the key and the element at the base of the table should be of type pointer—to—
element, and cast to type pointer-to—character.
The comparison function need not compare every byte, so arbitrary data may be contained in the
elements in addition to the values being compared.
Although declared as type pointer-to—character, the value returned should be cast into type
pointer—to—element.

SEE ALSO
hsearch(3C), Isearch(3C), gsort(3C), tsearch(3C).

DIAGNOSTICS
A NULL pointer is returned if the key cannot be found in the table.

BUGS
A random entry is returned if more than one entry matches the selection criteria.

Hewlett—Packard -2- July 2, 1985

CATREAD (3C) CATREAD (3C)

NAME
catread - MPE/RTE-style message catalog support
SYNOPSIS
int catread (fd, set_num, msg_num, msg_buf, buflen [,arg]...)
int fd, set_num, msg_num, buflen;
char *msg_buf, *arg;
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: HP
Native Language Support:
8-bit data, customs, messages
DESCRIPTION
Catread is layered on getmsg(8C) for supporting message catalog applications from MPE/RTE.
Refer to the external specifications for message catalogs on these systems for use of this routine.
The message read from the catalog may have embedded formatting information in the form
![digit]. An exclamation mark followed by a digit n is replaced by the nth argument string. If
exclamation marks are not numbered, they are replaced by the arguments in serial order. Either
all or none must be numbered.
If successful, returns the number of non-null bytes placed in the buffer.

DIAGNOSTICS
Catread returns a negative integer if set_num or msg__num are not found in the catalog.

SEE ALSO
gencat(1), getmsg(3C), hpnls(7).

Hewlett—-Packard -1- July 2, 1985

CLOCK (3C) CLOCK (3C)

NAME
clock - report CPU time used

SYNOPSIS
long clock ()

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Clock returns the amount of CPU time (in microseconds) used since the first call to clock. The
time reported is the sum of the user and system times of the calling process and its terminated
child processes for which it has executed wast(2) or system(3S).

The resolution of the clock varies depending on the hardware and software configuration. See
HARDWARE DEPENDENCIES for the various vales.

SEE ALSO
times(2), wait(2), system(3S).
HARDWARE DEPENDENCIES
Series 200: The clock resolution is 20 milliseconds.
Series 500: The clock resolution is 10 milliseconds as a default.

BUGS
The value returned by clock is defined in microseconds for compatibility with systems that have
CPU clocks with much higher resolution. Because of this, the value returned will wrap around
after accumulating only 2147 seconds of CPU time (about 36 minutes).

Hewlett-Packard -1- July 2, 1985

CONV (3C)

NAME

toupper, tolower, _toupper, _tolower, toascii - translate characters

SYNOPSIS

#include <ctype.h>

int
int
int
int
int
int
int
int
int
int

toupper (c)
c3

tolower (c)
c;

_toupper (c)
C3

_tolower (c)
c;

toascii (c)

C;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Toupper and tolower have as domain the range of getc(3S): the integers from -1 through 255. If
the argument of toupper represents a lower-case letter, the result is the corresponding upper-case
letter. If the argument of tolower represents an upper—case letter, the result is the corresponding

lower—case letter. All other arguments in the domain are returned unchanged.

CONV (3C)

The macros —toupper and __tolower accomplish the same thing as toupper and tolower but have
restricted domains and are faster. __toupper requires a lower-case letter as its argument; its result
is the corresponding upper—case letter. The macro _tolower requires an upper—case letter as its
argument; its result is the corresponding lower-case letter. Arguments outside the domain cause

undefined results. Use of this form will never work with foreign character sets.

Toascii yields its argument with all bits turned off that are not part of a standard 7 bit ASCII
character; it is intended for compatibility with other systems.

SEE ALSO

ascii(7), ctype(3C), getc(3S), nl_conv(3C).

Hewlett-Packard -1-

July 2, 1985

CRYPT(3C)

NAME
crypt — generate password encryption

SYNOPSIS
char *crypt (key, salt)
char *key, *salt;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION

CRYPT (3C)

Crypt is the password encryption function. It is based on the NBS Data Encryption Standard
(DES), with variations intended (among other things) to frustrate use of hardware implementa—

tions of the DES for key search.

Key is a user’s typed password. Salt is a two-character string chosen from the set [a—zA—-Z0—
9./]; this salt string is used to perturb the DES algorithm in one of 4096 different ways, after
which the password is used as the key to encrypt repeatedly a constant string. The returned
value points to the encrypted password, in the same alphabet as the salt. The first two characters

are the salt itself.
SEE ALSO

login(1), passwd(1), getpass(3C), passwd(5)

BUGS

The return value points to static data that is overwritten by the next call to crypt(3C).

Hewlett—Packard

July 2, 1985

CTERMID (3S) CTERMID (38)

NAME
ctermid - generate file name for terminal

SYNOPSIS
#include <stdio.h>
char #ctermid (s)
char *s;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Ctermid generates the path name of the controlling terminal for the current process, and stores it
in a string.
If s is a NULL pointer, the string is stored in an internal static area, the contents of which are
overwritten at the next call to ctermid, and the address of which is returned. Otherwise, s is
assumed to point to a character array of at least L__ctermid elements; the path name is placed in

this array and the value of s is returned. The constant L__ctermid is defined in the <stdio.h>
header file.

NOTES
The difference between ctermid and ttyname(3C) is that ttyname must be handed a file descriptor
and returns the actual name of the terminal associated with that file descriptor, while ctermid
returns a string (/dev /tty) that will refer to the terminal if used as a file name. Thus ttyname is
useful only if the process already has at least one file open to a terminal.

SEE ALSO
ttyname(3C).

Hewlett-Packard -1- July 2, 1985

CTIME (3C) CTIME (3C)

NAME

ctime, nl__ctime, daylight, localtime, gmtime, asctime, nl__asctime, timezone, tzset, tzname - con—
vert date and time to string

SYNOPSIS

HP-UX

#include <time.h>

char *ctime (clock)
long *clock;

char #nl_ctime (clock, format, langid)
long *clock; char #format; int langid;

struct tm *localtime (clock)
long *clock;

struct tm *gmtime (clock)
long *clock;

char #asctime (tm)
struct tm *tm;

char #nl_asctime (tm, format, langid)
struct tm #tm; char *format; int langid;

extern long timezone;
extern int daylight;
extern char xtzname[2];
void tzset ()

COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

Native Language Support:
8-bit data, customs, messages

DESCRIPTION

Ctime converts a long integer, pointed to by clock, representing the time in seconds since 00:00:00
GMT, January 1, 1970, and returns a pointer to a 26-character string in the following form. All
the fields have constant width.

Sun Sep 16 01:03:52 1973\n\0

NL_ctime extends the capabilities of ctime in two ways. First the format specification allows the
date and time to be output in a variety of ways. Format uses the field descriptors defined in
date(1). If the format is the null string, the D_T_FMT string defined by langinfo(8C) is used.
Second langid provides month and weekday names (when selected as alphabetic by the format
string) to be in the user’s native language.

Localtime and gmtime return pointers to ‘‘tm” structures, described below. Localtime corrects
for the time zone and any summer time zone corrections (Daylight Savings time in the US),
according to the TZ string in the user’s environment. Gmitime converts directly to Greenwich
Mean Time (GMT), which is the time the HP-UX System uses.

Asctime converts a “tm” structure to a 26—character string, as shown in the above example, and
returns a pointer to the string.

NL_asctime, like nl_ctime, allows the date string to be formatted, and month and weekday
names to be in the user’s native language. However, like asctime , it takes ‘“tm” as its argument.

Hewlett-Packard -1- July 2, 1985

CTIME (3C) CTIME (3C)

Declarations of all the functions and externals, and the “tm’ structure, are in the <time.h>
header file. The structure declaration is:

struct tm {
int tm_sec; /* seconds (0 — 59) */
int tm_min; /* minutes (0 - 59) */

int tm_hour; /* hours (0 - 23) %/
int tm_mday; /* day of month (1 - 31) %/
int tm__mon; /* month of year (0 — 11) */
int tm_year; /* year - 1900 */
int tm_wday; /* day of week (Sunday = 0) */
int tm__yday; /* day of year (0 - 365) */
int tm__isdst;
b
Tm_isdst is non-zero if a summer time zone correction such as Daylight Savings time is in effect.

The external long variable #imezone contains the difference, in seconds, between GMT and local
standard time (in EST, timezone is 5+60%60); the external variable daylight is non-zero if and only
if you have specified a summer time zone correction in your TZ environment variable. The values
of the external variables timezone, daylight, and tzname are set from the environment variable TZ
by the function tzset, which may be called directly, or indirectly through the functions localtime,
ctime, or nl_ctime. TZ is set by default when the user logs on, to a value in the local
/ete/profile file (see profile(5)).

HARDWARE DEPENDENCIES
Series 200/500:
Tztab(5) is not currently supported.

SEE ALSO
time(2), getenv(3C), langinfo(3C), profile(5), environ(7), hpnls(7).

BUGS
The return values point to static data whose content is overwritten by each call.

Hewlett—Packard -2- July 2, 1985

CTYPE (3C)

NAME

CTYPE (3C)

isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct, isprint, isgraph, iscntrl, isascii -
classify characters

SYNOPSIS

#include <ctype.h>

int isalpha (c)

int c;

HP-UX COMPATIBILITY

Level:
Origin:
DESCRIPTION

HP-UX/RUN ONLY
System V

These macros classify character-coded integer values by table lookup. Each is a predicate return—
ing nonzero for true, zero for false. Isascit is defined on all integer values; the rest are defined
only where isascii is true and on the single non-ASCII value EOF (see stdio(3S)).

isalpha
isupper
islower
isdigit
iszdigit
1salnum
isspace
ispunct
isprint
isgraph
isentrl
18ascit
DIAGNOSTICS

¢ is a letter.

¢ is an upper—case letter.

¢ is a lower—case letter.

¢ is a digit [0-9].

¢ is a hexadecimal digit [0-9], [A-F] or [a—f].

¢ is an alphanumeric (letter or digit).

¢ is a space, tab, carriage return, new-line, vertical tab, or form—feed.
¢ is a punctuation character (neither control nor alphanumeric).

¢ is a printing character, code 040 (space) through 0176 (tilde).

¢ is a printing character, like #sprint except false for space.

¢ is a delete character (0177) or an ordinary control character (less than 040).
¢ is an ASCII character, code less than 0200.

If the argument to any of these macros is not in the domain of the function, the result is

undefined.

SEE ALSO

nl_ctype(3C), stdio(38), ascii(7).

Hewlett—Packard

~1- July 2, 1985

CURSES (3X) CURSES (3X)

curses - CRT screen handling and optimization package

SYNOPSIS

#include <curses.h>
cc [flags | files -lcurses [libraries]

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: System V

DESCRIPTION

These routines provide a means for updating screens with reasonable optimization. To ensure
proper initialization, the routine ¢nitser() must be called before any other routines that deal with
windows and screens are used. The endwin() routine should be called before exiting to restore
conditions as they existed prior to program entry. Character-at—a-time input without echoing
(used in most interactive, screen oriented—programs), is obtained by calling “nonl(); cbreak();
noecho();” after calling snitscr().

The full-curses interface provides a means for manipulating window data structures. Windows
can be thought of as two-dimensional arrays of characters representing all or part of a CRT
screen. A default window called stdscr is supplied. Other windows can be created by using
newwin. Windows are referred to by variables declared “WINDOW *”; the type WINDOW is
defined in curses.h to be a C structure. These data structures are manipulated with functions
described below. Two simple (and widely used) examples are move and addch. (More-general
versions of these functions are provided. Their names begin with ‘w’, to signify that you can
specify the window to be used. Routines not beginning with ‘w’ affect only stdser.) After mani-
pulation, refresh() is called to make the user’s CRT screen look like stdscr.

Mini~Curses is a subset of curses. It only supports manipulation of the standard window. To
invoke this subset, use -DMINICURSES as a cc option. This level is smaller and faster than full
curses.

If the environment variable TERMINFO is defined, any program using curses checks for a local
terminal definition before checking in the standard place. For example, if the standard place is
/users/lib/terminfo, and TERM is set to “hp2623”, the compiled file is normally found in
/users/lib/terminfo/h/hp2623 (the “h” is copied from the first letter of “hp2623” to avoid
creation of huge directories). However, if TERMINFO is set to /users/mark/myterms, curses
first checks /users/mark/myterms/h/hp2623, then, if that fails, checks
/usr/lib/terminfo/h/hp2623. This is useful when developing experimental definitions and
when write permission in /users/lib/terminfo is not available.

SEE ALSO

terminfo(5) and termcap(3).

FUNCTIONS

All routines listed here are fully accessible to full curses. Those marked with an asterisk are also
available to Mini-Curses.

addch(ch)* add a character to (like putchar)
(wraps to next line at end of line)

addstr(str)* calls addch with each character in str

attroff(attrs)* turn off attributes named

attron(attrs)* turn on attributes named

attrset(attrs)* set current attributes to attrs

baud rate()* current terminal speed

beep()* sound beep on terminal

box(win, vert, hor) draw a box around edges of win

vert and hor are chars to use for vert.

Hewlett—Packard -1- July 2, 1985

CURSES (3X)

cbreak()*
clear()*
clearok(win, bf)
clrtobot()
clrtoeol()
delay_output(ms)*
delch()
deleteln()
delwin(win)
doupdate()
draino(ms)
echo()*
endwin()*
erase()*
erasechar()*
fixterm()
flash()*
flushinp()*
getch()
getstr(str)
gettmode()
getyx(win, y, x)
has_ic()*
has_il()*
idlok(win, bf)*
inch()
initser()*
insch(c)
insertln()
intrflush(win, bf)
keypad(win, bf)
killchar()*
leaveok(win, flag)

longname()

meta(win, flag)*

move(y, x)*

mvaddch(y, x, ch)*
mvaddstr(y, x, str)*
mvcur(oldrow, oldcol, newrow, newcol)
mvdelch(y, x)
mvgetch(y, x)
mvgetstr(y, x, str)
mvinch(y, x)

mvinsch(y, x, ¢)
mvprintw(y, x, fmt, args)
mvscanw(y, x, fmt, args)
mvwaddch(win, y, x, ch)
mvwaddstr(win, y, x, str)
mvwdelch(win, y, x)
mvwgetch(win, y, x)
mvwgetstr(win, y, x, str)

Hewlett-Packard

and hor. edges of box

set cbreak mode

clear stdscr

clear screen before next redraw of win
clear to bottom of stdscr

clear to end of line on stdscr

insert ms millisecond pause in output
delete a character

delete a line

delete win

update screen from all wnooutrefresh
drain output to ms milliseconds

set echo mode

end window modes

erase stdscr

return user’s erase character

restore tty to “in curses” state

flash screen or beep

throw away any typeahead

get a char from tty

get a string through stdscr

dummy entry point. Does nothing.
get (y, x) co-ordinates

true if terminal can do insert character
true if terminal can do insert line

use terminal’s insert/delete line if bf = 0
get char at current (y, x) co-ordinates
initialize screens

insert a char

insert a line

interrupts flush output if bf is TRUE
enable keypad input

return current user’s kill character
OK to leave cursor anywhere after refresh if
flag!=0 for win, otherwise cursor must be left
at current position.

return verbose name of terminal

allow meta characters on input if flag I= 0
move to (y, x) on stdscr

move(y, x) then addch(ch)

move(y, x) then addstr(str)

low-level cursor motion

like delch, but move(y, x) first

ete.

CURSES (3X)

July 2, 1985

CURSES (3X)

mvwin(win, by, bx)

mvwinch(win, y, x)

mvwinsch(win, y, x, ¢)

mvwprintw(win, y, x, fmt, args)

mvwscanw(win, y, x, fmt, args)

napms(ms)

newpad(nlines, ncols)

newterm(type, fpout, fpin)*

newwin(lines, cols, begin_y, begin_x)

nl()*

nocbreak()*

nodelay(win, bf)

noecho()*

nonl()*

noraw()*

overlay(winl, win2)

overwrite(winl, win2)

pnoutrefresh(pad, pminrow, pmincol,
sminrow, smincol, smaxrow, smaxcol)

prefresh(pad, pminrow, pmincol,
sminrow, smincol, smaxrow, smaxcol)

printw(fmt, argl, arg2, ...)
raw()*

refresh()*

resetterm()*

resetty()*

saveterm()*

savetty()*

scanw(fmt, argl, arg2, ...)
scroll(win)

scrollok(win, flag)
set_term(new)*
setscrreg(t, b)
setterm(type)
setupterm(term, filenum, errret)
standend()*

standout()*

subwin(win, lines, cols, begin_y, begin_x)
touchwin(win)

traceoff()

traceon()

typeahead(fd)

unctrl(ch)*

waddch(win, ch)
waddstr(win, str)
wattroff(win, attrs)
wattron(win, attrs)
wattrset(win, attrs)
welear(win)
welrtobot(win)
welrtoeol(win)
wdelch(win, c)
wdeleteln(win)

Hewlett-Packard

CURSES (3X)

suspend program for ms milliseconds
create a new pad with given dimensons s
set up new terminal of given type to I/O on fpout/fpin.
create a new window.

set newline mapping

unset cbreak mode

enable nodelay input mode through getch
unset echo mode

unset newline mapping

unset raw mode

overlay winl on win2

overwrite winl on top of win2

like prefresh but with no output until doupdate called

refresh from pad starting with given upper left corner
of pad with output to given portion of screen
printf on stdser

set raw mode

make current screen look like stdscr

set tty modes to “out of curses” state
reset tty flags to stored value

save current modes as “in curses” state
store current tty flags

scanf through stdscr

scroll win one line

allow terminal to scroll if flag =0

set the current terminal to new

set user scrolling region to lines t through b
establish terminal with given type
initialize specified terminal

clear standout mode attribute

set standout mode attribute

create a subwindow

change all of win

dummy entry point. Does nothing
dummy entry point. Does nothing

use file descriptor fd to check typeahead
printable version of ch

add char to win

add string to win

turn off attrs in win

turn on attrs in win

set attrs in win to attrs

clear win

clear to bottom of win

clear to end of line on win

delete char from win

delete line from win

3 July 2, 1985

CURSES (3X)

werase(win)
wgetch(win)
wgetstr(win, str)
winch(win)
winsch(win, ¢)
winsertln(win)
wmove(win, y, X)
wnoutrefresh(win)

wprintw(win, fmt, argl, arg2, ...)

wrefresh(win)

wscanw(win, fmt, argl, arg2, ...)

wsetscrreg(win, t, b)
wstandend (win)
wstandout(win)

TERMINFO LEVEL ROUTINES

erase win

get a char through win

get a string through win

get char at current (y, x) in win
insert char into win

insert line into win

set current (y, x) co-ordinates on win
refresh but no screen output

printf on win
make screen look like win

scanf through win

set scrolling region of win
clear standout attribute in win
set standout attribute in win

CURSES (3X)

These routines should be called by programs wishing to deal directly with the terminfo database.
Due to the low level of this interface, it is discouraged. Initially, setupterm should be called. This
will define the set of terminal dependent variables defined in terminfo(5). The include files
<curses.h> and <term.h> should be included to get the definitions for these strings, numbers,
and flags. Parameterized strings should be passed through tparm to instantiate them. All ter—
minfo strings (including the output of ¢parm) should be printed with tputs or putp . Before exit—
ing, resetterm should be called to restore the tty modes. (Programs desiring shell escapes or
suspending with control-Z can call resetterm before the shell is called and fizterm after returning

from the shell.)
fixterm()

resetterm()
setupterm(term, fd, rc)

tparm(str, pl, p2, ..., p9)

tputs(str, affent, putc)

putp(str)

vidputs(attrs, putc)

vidattr(attrs)

Hewlett—Packard

restore tty modes for terminfo use

(called by setupterm)

reset tty modes to state before program entry
read in database. Terminal type is the
character string term, all output is to UNIX
System file descriptor fd. A status value is
returned in the integer pointed to by rc: 1

is normal. The simplest call would be
setupterm(0, 1, 0) which uses all defaults.

instantiate string str with parms p;-

apply padding info to string str.

affent is the number of lines affected,

or 1 if not applicable. Putcis a
putchar-like function to which the characters
are passed, one at a time.

handy function that calls tputs

(str, 1, putchar).

output the string to put terminal in video
attribute mode attrs, which is any
combination of the attributes listed below.
Chars are passed to putchar-like

function pute.

Like vidputs but outputs through
putchar.

July 2, 1985

CURSES (3X)

CURSES (3X)

TERMCAP COMPATIBILITY ROUTINES
These routines were included as a conversion aid for programs that use termcap. Their parame-
ters are the same as for termcap, but they are emulated using the terminfo database. They may
be removed at a later date.

tgetent(bp, name)
tgetflag(id)
tgetnum(id)
tgetstr(id, area)
tgoto(cap, col, row)
tputs(cap, affent, fn)

ATTRIBUTES

look up termcap entry for name

get boolean entry for id

get numeric entry for id

get string entry for id

apply parms to given cap

apply padding to cap calling fn as putchar

The following video attributes can be passed to the functions attron,attroff,attrset.

A_STANDOUT
A_UNDERLINE
A_REVERSE
A_BLINK
A_DIM

A_BOLD
A_BLANK
A_PROTECT
A_ALTCHARSET

Hewlett—Packard

Terminal’s best highlighting mode
Underlining

Reverse video

Blinking

Half bright

Extra bright or bold

Blanking (invisible)

Protected

Alternate character set

-5- July 2, 1985

CURSES (3X)

FUNCTION KEYS

CURSES (3X)

The following function keys are returned by getch if keypad has been enabled and the function is
supported. Note that some of these may not be currently supported due to lack of definitions in
terminfo, or because the terminal does not transmit a unique code when the key is pressed.

Name
KEY_BREAK
KEY_DOWN
KEY_UP
KEY_LEFT
KEY_RIGHT
KEY_HOME
KEY_BACKSPACE
KEY_F0
KEY_F(n)
KEY_DL
KEY_IL
KEY_DC
KEY_IC
KEY_EIC
KEY_CLEAR
KEY_EOS
KEY_EOL
KEY_SF
KEY_SR
KEY_NPAGE
KEY_PPAGE
KEY_STAB
KEY_CTAB
KEY_CATAB
KEY_ENTER
KEY_SRESET
KEY_RESET
KEY_PRINT
KEY_LL

WARNING

Value
0401
0402
0403
0404
0405
0406
0407
0410

(KEY_F0+(n))

0510
0511
0512
0513
0514
0515
0516
0517
0520
0521
0522
0523
0524
0525
0526
0527
0530
0531
0532
0533

Key name
break key (unreliable)
The four arrow keys ...

Home key (upward+left arrow)
backspace (unreliable)

Function keys. Space for 64 is reserved.

Formula for fn.
Delete line
Insert line
Delete character
Insert char or enter insert mode
Exit insert char mode
Clear screen
Clear to end of screen
Clear to end of line
Scroll 1 line forward
Scroll 1 line backwards (reverse)
Next page
Previous page
Set tab
Clear tab
Clear all tabs
Enter or send (unreliable)
soft (partial) reset (unreliable)
reset or hard reset (unreliable)
print or copy
home down or bottom (lower left)

The plotting library plot(3X) and the curses library curses(3X) both use the names erase() and
move(). The curses versions are macros. If you need both libraries, put the plot(3X) code in a
different source file than the curses(3X) code, and/or #undef move() and erase() in the plot(3X)

code.

Hewlett-Packard

July 2, 1985

CUSERID (38)

NAME
cuserid - get character login name of the user

SYNOPSIS
#include <stdio.h>

char *cuserid (s)
char *s;

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System V
DESCRIPTION

CUSERID (38)

Cuserid generates a character-string representation of the login name that the owner of the
current process is logged in under. If s is a NULL pointer, this representation is generated in an
internal static area, the address of which is returned. Otherwise, s is assumed to point to an
array of at least L_cuserid characters; the representation is left in this array. The constant

L__cuserid is defined in the <stdio.h> header file.

DIAGNOSTICS

If the login name cannot be found, cuserid returns a NULL pointer; if s is not a NULL pointer, a

null character (\0) will be placed at s/0].
BUGS

Cuserid uses getpwnam(3C); thus the results of a user’s call to the latter will be obliterated by a

subsequent call to the former.

SEE ALSO
getlogin(3C), getpwent(3C).

Hewlett—Packard -1-

July 2, 1985

DIAL(3C) DIAL(3C)

NAME

dial - establish an out-going terminal line connection

SYNOPSIS

HP-UX

#include <dial.h>

int dial (call)
CALL call;

void undial (fd)
int fd;

COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V

Dial returns a file-descriptor for a terminal line open for read/write. The argument to dial is a
CALL structure (defined in the <dtal.h> header file).

When finished with the terminal line, the calling program must invoke undial to release the sema—
phore that has been set during the allocation of the terminal device.

The definition of CALL in the <dial.h> header file is:
typedef struct {

struct termio xattr; /* pointer to termio attribute struct */

int baud; /* transmission data rate */

int speed; /* 212A modem: low=300, high=1200 %/

char xline; /* device name for out-going line */

char *telno; /* pointer to tel-no digits string %/

int modem; /* specify modem control for direct lines */

char *device; /*Will hold the name of the device usedd
to make a connection */

int dev_len; /* The length of the device used to

make connection */
} CALL;

The CALL element speed is intended only for use with an outgoing dialed call, in which case its
value should be either 300 or 1200 to identify the 113A modem, or the high- or low-speed setting
on the 212A modem. Note that the 113A modem or the low-speed setting of the 212A modem will
transmit at any rate between 0 and 300 bits per second. However, the high-speed setting of the
212A modem transmits and receivers at 1200 bits per second only. The CALL element baud is for
the desired transmission baud rate. For example, one might set baud to 110 and speed to B00 (or
1200). However, if speed set to 1200 baud must be set to high (1200).

If the desired terminal line is a direct line, a string pointer to its device—name should be placed in
the line element in the CALL structure. Legal values for such terminal device names are kept in
the L-devices file. In this case, the value of the baud element need not be specified as it will be
determined from the L-devices file.

The telno element is for a pointer to a character string representing the telephone number to be
dialed. Such numbers may consist only of symbols described on the acu(7). The termination
symbol will be supplied by the dial function, and should not be included in the telno string passed
to dial in the CALL structure.

The CALL element modem is used to specify whether or not modem control is required for direct
lines. This element should be non-zero if modem control is required for the line. The CALL ele—
ment attr is a pointer to a termio structure, as defined in the termio.h header file. A NULL value
for this pointer element may be passed to the dial function, but if such a structure is included, the
elements specified in it will be set for the outgoing terminal line before the connection is esta—
blished. This is often important for certain attributes such as parity and baud-rate.

Hewlett-Packard -1- July 2, 1985

DIAL (3C)

DIAL(3C)

The CALL element device is used to hold the device name (cul..) that establishes the connection.

The CALL element dev__len is the length of the device name that is copied into the array device.

FILES

/Jusr/lib/uucp/L-devices
/usr/spool/uucp/LCK..tty-device

SEE ALSO

uucp(1C), alarm(2), read(2), write(2), acu(4), termio(4).

DIAGNOSTICS

On failure, a negative value indicating the reason for the failure will be returned. Mnemonics for
these negative indices as listed here are defined in the <dial.h> header file.

INTRPT
D_HUNG
NO_ANS
ILL_BD
A_PROB
L_PROB
NO_Ldv
DV_NT_A
DV_NT_K
NO_BD_A
NO_BD_K

WARNINGS

-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11

/* interrupt occurred */

/* dialer hung (no return from write) %/
/* no answer within 10 seconds */

/* illegal baud-rate */

/* acu problem (open() failure) */

/* line problem (open() failure) */

/* can’t open LDEVS file */

/* requested device not available %/

/* requested device not known */

/* no device available at requested baud */
/* no device known at requested baud */

Including the <dial.h> header file automatically includes the <termio.h> header file.

The above routine uses <stdio.h>, which causes it to increase the size of programs, not otherwise
using standard I/O, more than might be expected.

BUGS

An alarm(2) system call for 3600 seconds is made (and caught) within the dial module for the
purpose of “touching” the LCK.. file and constitutes the device allocation semaphore for the ter—
minal device. Otherwise, uucp(1C) may simply delete the LCK.. entry on its 90-minute clean-up
rounds. The alarm may go off while the user program is in a read(2) or write(2) system call,
causing an apparent error return. If the user program expects to be around for an hour or more,
error returns from reads should be checked for (errno==EINTR), and the read possibly reis—

sued.

Hewlett—Packard

) . July 2, 1985

DIRECTORY (3C) DIRECTORY (3C)

NAME
opendir, readdir, telldir, seekdir, rewinddir, closedir — directory operations

SYNOPSIS
#include <ndir.h>

DIR *opendir(filename)
char xfilename;

struct direct *readdir(dirp)
DIR #dirp;

long telldir(dirp)
DIR #*dirp;

seekdir(dirp, loc)
DIR #dirp;
long loc;

rewinddir(dirp)
DIR *dirp;

closedir(dirp)
DIR *dirp;

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: UCB
DESCRIPTION
The purpose of this library package is to provide functions which allow programs to read directory
entries without having to know the actual directory format associated with the file system. This

allows programs to be ported from one file system to another. Therefore, this is the recommended
way to read directory entries.

Opendir opens the directory named by filename and associates a directory stream with it. Open-
dir returns a pointer to be used to identify the directory stream in subsequent operations. The
pointer NULL is returned if filename cannot be accessed, if filename is not a directory, or if
sufficient memory cannot be allocated for a buffer of size DIRBLKSIZ blocks (see HARDWARE
DEPENDENCIES).

Readdir returns a pointer to the next directory entry. It returns NULL upon reaching the end of
the directory or detecting an invalid seekdir operation.

Telldir returns the current location, in bytes, associated with the named directory stream.

Seekdir sets the position of the next readdir operation on the directory stream. Loc is a byte offset
within the directory file. The new position reverts to the one associated with the directory stream
when the telldir operation was performed. Values returned by telldir are good only for the lifetime
of the DIR pointer from which they are derived. If the directory is closed and then re-opened, the
telldir value may be invalidated due to undetected directory compaction. It is safe to use a previ-
ous telldir value immediately after a call to opendir and before any calls to readdir.

Rewinddir resets the position of the named directory stream to the beginning of the directory.

Closedir causes the named directory stream to be closed, and the structure associated with the
DIR pointer to be freed.

See /usr/include/ndir.h for a description of the fields available in a directory entry. The preferred
way to search the current directory for entry “name” is:

len = strlen(name);
dirp = opendir(”.”);
for (dp = readdir(dirp); dp != NULL; dp = readdir(dirp)) {

Hewlett-Packard -1- November 15, 1985

DIRECTORY (3C) DIRECTORY (3C)

if (dp->d_namlen == len && !strcmp(dp->d_name, name)) {
closedir(dirp);
return FOUND;

}

}
closedir(dirp);
return NOT_FOUND;
HARDWARE DEPENDENCIES
Series 200:
Malloc(3C) is used to allocate memory.

Series 500:
Malloc(3C) is used to allocate memory.

SEE ALSO
/usr/include/ndir.h, close(2), lseek(2), open(2), read(2).

Hewlett-Packard -2- November 15, 1985

DRAND48 (3C) DRAND48(3C)

NAME
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 - generate uni—
formly distributed pseudo-random numbers

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long Irand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v(3];

void lcong48 (param)
unsigned short param|7];

DESCRIPTION
This family of functions generates pseudo-random numbers using the well-known linear
congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision floating—point values uni-
formly distributed over the interval $[0.0,71.0).$

Functions lrand48 and nrand/8 return non-negative long integers uniformly distributed over the
interval $[0,72 sup 31).$

Functions mrand48 and jrand48 return signed long integers uniformly distributed over the inter-
val $[-2 sup 31,72 sup 31).$

Functions srand48, seed48 and lcong48 are initialization entry points, one of which should be
invoked before either drand{8, lrand48 or mrand48 is called. (Although it is not recommended
practice, constant default initializer values will be supplied automatically if drand{8, lrand48 or
mrand48 is called without a prior call to an initialization entry point.) Functions erand48,
nrand48 and jrand48 do not require an initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values, $X sub i ,$ according to
the linear congruential formula

X sub{n+1}"="(aX sub n"+"c) sub{roman mod m} """ n>=0.
The parameter $m"="2 sup 488%; hence 48-bit integer arithmetic is performed. Unless lcong/8
has been invoked, the multiplier value a and the addend value c are given by

a“mark ="roman 5DEECE66D “sub 16™="roman 273673163155 "sub 8
¢"lineup ="roman B"sub 16"="roman 13"sub 8 .

Hewlett-Packard -1- July 2, 1985

DRAND48(3C) DRAND48(3C)

The value returned by any of the functions drand8, erand48, lrand48, nrand48, mrand{8 or
jrand48 is computed by first generating the next 48-bit $X sub i$ in the sequence. Then the
appropriate number of bits, according to the type of data item to be returned, are copied from the
high-order (leftmost) bits of $X sub i$ and transformed into the returned value.

The functions drand48, lrand/8 and mrand}8 store the last 48-bit $X sub i$ generated in an
internal buffer; that is why they must be initialized prior to being invoked. The functions
erand48, nrand/8 and jrand/8 require the calling program to provide storage for the successive
$X sub i$ values in the array specified as an argument when the functions are invoked. That is
why these routines do not have to be initialized; the calling program merely has to place the
desired initial value of $X sub i$ into the array and pass it as an argument. By using different
arguments, functions erand48, nrand48 and jrand48 allow separate modules of a large program to
generate several independent streams of pseudo-random numbers, i.e., the sequence of numbers in
each stream will not depend upon how many times the routines have been called to generate
numbers for the other streams.

The initializer function srand48 sets the high-order 32 bits of $X sub i$ to the 32 bits contained
in its argument. The low-order 16 bits of $X sub i$ are set to the arbitrary value $roman 330E
sub 16 .$

The initializer function seed/8 sets the value of $X sub i$ to the 48-bit value specified in the
argument array. In addition, the previous value of $X sub i$ is copied into a 48-bit internal
buffer, used only by seed48, and a pointer to this buffer is the value returned by seed48. This
returned pointer, which can just be ignored if not needed, is useful if a program is to be restarted
from a given point at some future time — use the pointer to get at and store the last $X sub i$
value, and then use this value to reinitialize via seed48 when the program is restarted.

The initialization function lcong/8 allows the user to specify the initial $X sub i ,$ the multiplier
value $a,3 and the addend value $c.$ Argument array elements param[0-2] specify $X sub i ,$
param[3-5] specify the multiplier $a,$ and param/[6] specifies the 16-bit addend $c.$ After
lcong48 has been called, a subsequent call to either srand/8 or seed48 will restore the ‘“‘standard”
multiplier and addend values, a and $c,$ specified on the previous page.

SEE ALSO
rand(3C).

Hewlett—Packard -2- July 2, 1985

ECVT (3C) ECVT(3C)

NAME

ecvt, fevt, gevt, nl_gevt - convert floating-point number to string

SYNOPSIS

HP-UX

char *ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char #fevt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char #gcvt (value, ndigit, buf)
double value;

int ndigit;

char *buf;

char #nl_gcvt (value, ndigit, buf, langid)
double value;

int ndigit;

char *buf;

int langid;

COMPATIBILITY

Level: HP-UX/RUN ONLY

Origin: System V

Native Language Support:
8-bit data, customs, messages

DESCRIPTION

Ecvt converts value to a null-terminated string of ndigit digits and returns a pointer thereto.
The high-order digit is non-zero, unless the value is zero. The low-order digit is rounded. The
position of the decimal point relative to the beginning of the string is stored indirectly through
decpt (negative means to the left of the returned digits). The decimal point is not included in the
returned string. If the sign of the result is negative, the word pointed to by sign is non-zero, oth—
erwise it is zero.

Feut is identical to ecvt, except that the correct digit has been rounded for printf “%f” (FOR-
TRAN F-format) output of the number of digits specified by ndigit.

Geut converts the value to a null-terminated string in the array pointed to by buf and returns
buf. It attempts to produce ndigit significant digits in FORTRAN F—format if possible, otherwise
E-format, ready for printing. A minus sign, if there is one, or a decimal point will be included as
part of the returned string. Trailing zeros are suppressed.

NL _geut differs from gevt only in that it uses langid to determine what the radix character should
be (e.g., ' or). If langid is not valid, or information for langid has not been installed, the radix
character defaults to a period.

SEE ALSO

BUGS

printf(3S), hpnls(7), langid(7).

The values returned by ecvt and fevt point to a single static data array whose content is overwrit—
ten by each call.

Hewlett—Packard -1- July 2, 1985

END (3C) END (3C)

NAME
end, etext, edata - last locations in program

SYNOPSIS
extern char end;
extern char etext;
extern char edata;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
These names refer neither to routines nor to locations with interesting contents. The address of
etert is the first address above the program text, edata above the initialized data region, and end
above the uninitialized data region. Note that the definition of each of these is implementation—
dependent. See HARDWARE DEPENDENCIES below.

When execution begins, the program break (the first location beyond the data) coincides with
end, but the program break may be reset by the routines of brk(2), malloc(3C), standard
input/output (stdio(3S)), the profile (-p) option of cc(1), and so on. Thus, the current value of
the program break should be determined by sbrk(0) (see brk(2)).

HARDWARE DEPENDENCIES
Series 500:
End is the lowest heap address available to the user. Etezt and Edata are not supported.

Memalle(2) is more efficient than malloc(3C) for setting the program break.

SEE ALSO
cc(1), brk(2), malloc(3C), stdio(3S).

Hewlett—Packard -1- July 2, 1985

ERF (3M)

NAME
erf, erfc - error function and complementary error function

SYNOPSIS
#include <math.h>

double erf (x)
double x;

double erfc (x)
double x;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION

z
Erf returns the error function of z, defined as \;— g e~t2dt.
™

ERF (3M)

Erfe, which returns 1.0 - erf(z), is provided because of the extreme loss of relative accuracy if
erf(z) is called for large z and the result subtracted from 1.0 (e.g., for z = 5, 12 places are lost).

SEE ALSO
exp(3M).

Hewlett-Packard -1-

July 11, 1985

EXP (3M) EXP (3M)

NAME
exp, log, log10, pow, sqrt - exponential, logarithm, power, square root functions
SYNOPSIS
#include <math.h>
double exp (x) float fexp (x)
double x; ifloat x;
double log (x) float flog (x)
double x; ifloat x;
double log10 (x) float flog10 (x)
double x; ifloat x;
double pow (x, y) float fpow (x,y)
double x, y; {float x,y;
double sqrt (x) float fsqrt (x)
double x; ifloat x;

1 see important note below

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

Ezp returns ¢”.

Log returns the natural logarithm of z. The value of z must be positive.

Log10 returns the logarithm base ten of z. The value of = must be positive.

Pow returns z¥. If z is zero, y must be positive. If z is negative, y must be an integer.
Sgrt returns the non-negative square root of z. The value of z may not be negative.

IMPORTANT NOTE: The corresponding single-precision routines fezp, flog, flog10, fpow, and
fsqrt expect true single-precision arguments, and therefore cannot be called from standard C.
They are provided for support of FORTRAN and Pascal.

HARDWARE DEPENDENCIES

Series 200/500:
The algorithms used are those from HP 9000 BASIC.

DIAGNOSTICS

Ezp sets errno to ERANGE and returns HUGE when the correct value would overflow, or 0
when the correct value would underflow.

Log and log10 return -HUGE and set errno to EDOM when z is non-positive. A message indi—
cating DOMAIN error (or SING error when z is 0) is printed on the standard error output.

Pow returns 0 and sets errno to EDOM when z is 0 and y is non—positive, or when z is negative
and y is not an integer. In these cases a message indicating DOMAIN error is printed on the stan—
dard error output. When the correct value for pow would overflow or underflow, pow returns
+HUGE or 0 respectively, and sets errno to ERANGE.

Sqrt returns 0 and sets errno to EDOM when z is negative. A message indicating DOMAIN error
is printed on the standard error output.

Error handling is identical for both single- and double-precision routines, except for one con-
sideration: In any situation where the double-precision routine would return +HUGE, the
corresponding single—precision routine returns MAXFLOAT.

Hewlett—Packard -1- July 11, 1985

EXP (3M) EXP (3M)

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

Hewlett-Packard -2- July 11, 1985

FCLOSE (38) FCLOSE (3S)

NAME
fclose, fllush - close or flush a stream

SYNOPSIS
#include <stdio.h>
int fclose (stream)
FILE #stream;

int fflush (stream)
FILE xstream;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
Felose causes any buffered data for the named stream to be written out, and the stream to be
closed. Buffers allocated by the standard input/output system are freed.

Feclose is performed automatically for all open files upon calling ezit(2).

Fflush causes any buffered data for the named stream to be written to that file. The stream
remains open.

DIAGNOSTICS
These functions return 0 for success, and EOF if any error (such as trying to write to a file that
has not been opened for writing) was detected.

SEE ALSO
close(2), exit(2), fopen(3S), setbuf(3S).

Hewlett—Packard -1- July 2, 1985

FERROR (38) FERROR (38)

NAME
ferror, feof, clearerr, fileno - stream status inquiries
SYNOPSIS
#include <stdio.h>
int ferror (stream)
FILE
*stream;
int feof (stream)
FILE
*stream;
void clearerr (stream)
FILE
*stream;
int fileno (stream)
FILE
*stream;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
Ferror returns non—zero when an I/O error has previously occurred reading from or writing to the
named stream, otherwise zero. Unless cleared by clearerr, or unless the specific stdio routine so
indicates, the error indication lasts until the stream is closed.

Feof returns non-zero when EOF has previously been detected reading the named input stream,
otherwise zero.

Clearerr resets the error indicator and EOF indicator to zero on the named stream.
Fileno returns the integer file descriptor associated with the named stream; see open(2).

NOTE
All these functions are implemented as macros; they cannot be declared or redeclared.

SEE ALSO
open(2), fopen(3S).

Hewlett—Packard -1- July 2, 1985

FLOOR (3M) FLOOR (3M)

NAME
floor, ceil, fmod, fabs - floor, ceiling, remainder, absolute value functions

SYNOPSIS
#include <math.h>
double floor (x)
double x;
double ceil (x)
double x;
double fmod (x, y)
double x, y;
double fabs (x)
double x;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V
DESCRIPTION
Floor returns the largest integer (as a double-precision number) not greater than z.
Ceil returns the smallest integer not less than z.
Fmod returns the floating-point remainder of the division of z by y: zero if y is zero or if z/y
would overflow; otherwise the number f with the same sign as z, such that z = iy + f for some
integer 7, and | fI < | y|.
Fabs returns the absolute value of z, | z | .

SEE ALSO
abs(3C).

Hewlett—-Packard -1- July 9, 1985

FOPEN (38S) FOPEN (3S)

NAME

fopen, freopen, fdopen - open or re-open a stream file; convert file to stream
SYNOPSIS

#include <stdio.h>

FILE *fopen (file_name, type)
char #file_name, *type;

FILE #freopen (file_name, type, stream)
char *file_name, *type;
FILE xstream;

FILE *fdopen (fildes, type)
int fildes;
char *type;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Fopen opens the file named by file_name and associates a stream with it. Fopen returns a
pointer to the FILE structure associated with the stream.

File__name points to a character string that contains the name of the file to be opened.

Type is a character string having one of the following values:

“r” open for reading

“w” truncate or create for writing

“a” append; open for writing at end of file, or create for writing
“r+” open for update (reading and writing)

“w+" truncate or create for update

“a+" append; open or create for update at end-of-file

Freopen substitutes the named file in place of the open stream. The original stream is closed,
regardless of whether the open ultimately succeeds. Freopen returns a pointer to the FILE struc-
ture associated with stream.

Freopen is typically used to attach the preopened streams associated with stdin, stdout and
stderr to other files.

Fdopen associates a stream with a file descriptor. File descriptors are obtained from open, dup,
creat, or pipe(2), which open files but do not return pointers to a FILE structure stream. Streams
are necessary input for many of the Section 3S library routines. The type of stream must agree
with the mode of the open file.

When a file is opened for update, both input and output may be done on the resulting stream.
However, output may not be directly followed by input without an intervening fseek or rewind,
and input may not be directly followed by output without an intervening fseek, rewind, or an
input operation which encounters end—of-file.

When a file is opened for append (i.e., when type is "a” or "a+"), it is impossible to overwrite
information already in the file. Fseek may be used to reposition the file pointer to any position in
the file, but when output is written to the file, the current file pointer is disregarded. All output
is written at the end of the file and causes the file pointer to be repositioned at the end of the
output. If two separate processes open the same file for append, each process may write freely to
the file without fear of destroying output being written by the other. The output from the two
processes will be intermixed in the file in the order in which it is written.

Hewlett-Packard -1- July 2, 1985

FOPEN (3S) FOPEN (3S)

SEE ALSO
creat(2), dup(2), open(2), fclose(3S), pipe(2), fclose(3S), fseek(3S), popen(3S).

DIAGNOSTICS
Fopen and freopen return a NULL pointer if file-name cannot be accessed, if there are too many
open files, or if the arguments are incorrect.

Fdopen returns a NULL if there are too many open files, or if the arguments are ill-formed.

Hewlett—Packard -2- July 2, 1985

FREAD (3S) FREAD (3S)

NAME
fread, fwrite - buffered binary input/output to a stream file

SYNOPSIS
#include <stdio.h>

int fread (ptr, size, nitems, stream)
char *ptr;

int size, nitems;

FILE *stream;

int fwrite (ptr, size, nitems, stream)
char *ptr;

int size, nitems;

FILE #stream;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Fread copies, into an array pointed to by pir, nitems items of data from the named input stream,
where an item of data is a sequence of bytes (not necessarily terminated by a null byte) of length
size. Fread stops appending bytes if an end-of-file or error condition is encountered while read-
ing stream, or if nitems items have been read. Fread leaves the file pointer in siream, if defined,
pointing to the byte following the last byte read if there is one. Fread does not change the con-
tents of stream.

Fuwrite appends at most nitems items of data from the array pointed to by ptr to the named out—
put stream. Fwrite stops appending when it has appended nitems items of data or if an error
condition is encountered on stream. Fuwrite does not change the contents of the array pointed to
by ptr.

The argument size is typically sizeof(*ptr) where the pseudo—function sizeof specifies the length of
an item pointed to by ptr. If ptr points to a data type other than char it should be cast into a
pointer to char.

SEE ALSO
read(2), write(2), fopen(3S), getc(3S), gets(3S), printf(38S), pute(3S), puts(3S), scanf(3S).

DIAGNOSTICS
Fread and fwrite return the number of items read or written. If size or nitems is non-positive, no
characters are read or written and 0 is returned by both fread and fwrite.

Hewlett—Packard -1- July 2, 1985

FREXP (3C) FREXP (3C)

NAME
frexp, ldexp, modf - split floating—point into mantissa and exponent

SYNOPSIS
double frexp (value, eptr)
double value;
int *eptr;

double ldexp (value, exp)
double value;
int exp;

double modf (value, iptr)
double value, *iptr;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION

Every non-zero number can be written uniquely as z * 2", where the “mantissa” (fraction) z is in
the range 0.5 < | z| < 1.0, and the ‘‘exponent” n is an integer.

Frezp returns the mantissa of a double value, and stores the exponent indirectly in the location
pointed to by eptr. If value is zero, both results returned by frezp are zero.

Ldexp returns the quantity value x 2°%.

Modf returns the signed fractional part of value and stores the integral part indirectly in the loca—
tion pointed to by iptr.

DIAGNOSTICS
If ldezp would cause overflow, £HUGE is returned (according to the sign of value), and errno is
set to ERANGE.
If ldezp would cause underflow, zero is returned and errno is set to ERANGE.

Hewlett—Packard . -1- July 2, 1985

FSEEK (38) FSEEK (3S)

NAME
fseek, rewind, ftell - reposition a file pointer in a stream

SYNOPSIS
#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE *stream;

long offset;

int ptrname;

long rewind (stream)
FILE *stream;
long ftell (stream)
FILE *stream;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
Fseek sets the position of the next input or output operation on the stream. The new position is
at the signed distance offset bytes from the beginning, from the current position, or from the end
of the file, according as ptrname has the value 0, 1, or 2.

Rewind(stream) is equivalent to fseek(stream, OL, 0).
Fseek and rewind undo any effects of ungetc(3S).

After fseek or rewind, the next operation on a file opened for update may be either input or out—
put. Rewind also does an implicit clearerr(3s) call.

Ftell returns the offset of the current byte relative to the beginning of the file associated with the
named stream.

SEE ALSO
Iseek(2), fopen(3S), popen(3S), ungetc(3S).

DIAGNOSTICS
Fseek returns non—zero for improper seeks, otherwise zero. An improper seek can be, for example,
an fseek done on a file that has not been opened via fopen; in particular, fseek may not be used
on a terminal, or on a file opened via popen(3S).

Ftell returns -1 for error conditions.

WARNING .
Although on HP-UX an offset returned by ftell is measured in bytes, and it is permissible to seek
to positions relative to that offset, portability to non-UNIX systems requires that an offset be
used by fseek directly. Arithmetic may not meaningfully be performed on such an offset, which is
not necessarily measured in bytes.

Hewlett-Packard -1- July 2, 1985

FTW (3C) FTW(3C)

NAME

ftw - walk a file tree

SYNOPSIS

#include <ftw.h>

int ftw (path, fn, depth)
char *path;

int (*n) ();

int depth;

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

Ftw recursively descends the directory hierarchy rooted in path. For each object in the hierarchy,
ftw calls fn, passing it a pointer to a null-terminated character string containing the name of the
object, a pointer to a stat structure (see stat(2)) containing information about the object, and an
integer. Possible values of the integer, defined in the <ftw.h> header file, are FTW_F for a file,
FTW_D for a directory, FTW_DNR for a directory that cannot be read, and FTW_NS for an
object for which stat could not successfully be executed. If the integer is FTW_DNR, descendants
of that directory will not be processed. If the integer is FTW_NS, the stat structure will contain
garbage. An example of an object that would cause FTW_NS to be passed to fn would be a file in
a directory with read but without execute (search) permission.

Ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of fn returns a nonzero
value, or some error is detected within ftw (such as an I/O error). If the tree is exhausted, ftw
returns zero. If fn returns a nonzero value, fiw stops its tree traversal and returns whatever value
was returned by fn. If ftw detects an error, it returns -1, and sets the error type in errno.

Ftw uses one file descriptor for each level in the tree. The depth argument limits the number of
file descriptors so used. If depth is zero or negative, the effect is the same as if it were 1. Depth
must not be greater than the number of file descriptors currently available for use. Ftw will run
more quickly if depth is at least as large as the number of levels in the tree.

SEE ALSO

BUGS

stat(2), malloc(3C).

Because ftw is recursive, it is possible for it to terminate with a memory fault when applied to
very deep file structures.

It could be made to run faster and use less storage on deep structures at the cost of considerable
complexity.

Ftw uses malloc(3C) to allocate dynamic storage during its operation. If ftw is forcibly ter-
minated, such as by longjmp being executed by fn or an interrupt routine, fiw will not have a
chance to free that storage, so it will remain permanently allocated. A safe way to handle inter-
rupts is to store the fact that an interrupt has occurred, and arrange to have fn return a nonzero
value at its next invocation.

Hewlett—Packard -1- July 2, 1985

GAMMA (3M)

NAME
gamma, signgam - log gamma function

SYNOPSIS
#include <math.h>

double gamma (x)
double x;

extern int signgam;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION

GAMMA (3M)

(o]

Gamma returns In(| T'(z) |), where I'(z) is defined as [e—‘ tz-1dt. The sign of I'(z) is returned

in the external integer signgam. The argument z may not be a non-positive integer. (Gamma is
defined over the reals excluding the non—positive integers).

The following C program fragment might be used to calculate I':

if ((y = gamma(x)) > LN_MAXDOUBLE)

error();
y = signgam * exp(y);

where LN_MAXDOUBLE is the least value that causes ezp(3M) to return a range error, and is

defined in the <wvalues.h> header file.
DIAGNOSTICS

For non—positive integer arguments HUGE is returned, and errno is set to EDOM. A message
indicating SING error is printed on the standard error output.

If the correct value would overflow, gamma returns HUGE and sets errno to ERANGE.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
exp(3M), matherr(3M), values(5).

Hewlett—Packard

July 9, 1985

GETC(3S) GETC(3S)

NAME
getc, getchar, fgete, getw - get character or word from a stream file

SYNOPSIS
#include <stdio.h>

int getc (stream)
FILE *stream;

int getchar ()

int fgetc (stream)
FILE *stream;

int getw (stream)
FILE *stream;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Getc returns the next character (i.e., byte) from the named input stream, as an integer. It also
moves the file pointer, if defined, ahead omne character in stream. Getchar is defined as
getc(stdin). Getc and getchar are macros and so cannot be used if a function is necessary; for
example one cannot have a function pointer point to them.

Fgetc behaves like getc, but is a function rather than a macro. Fgetc runs more slowly than gete,
but it takes less space per invocation and its name can be passed as an argument to a function.

Getw returns the next word (i.e. int in C) from the named input stream. Getw increments the
associated file pointer, if defined, to point to the next word. The size of a word is the size of an
integer and varies from machine to machine. Getw assumes no special alignment in the file.

SEE ALSO
fclose(3S), ferror(3S), fopen(3S), fread(3S), gets(3S), putc(3S), scanf(3S).

DIAGNOSTICS
These functions return the constant EOF at end-of-file or upon an error. Because EOF is a valid
integer, ferror(3S) should be used to detect getw errors.

WARNING
If the integer value returned by getc, getchar, or fgetc is stored into a character variable and then
compared against the integer constant EOF, the comparison may never succeed, because sign—
extension of a character on widening to integer is machine-dependent.

Hewlett—Packard -1- July 2, 1985

GETC(38) GETG(3S)

BUGS
Because it is implemented as a macro, getc treats incorrectly a stream argument with side effects.
In particular, getc(#f++) does not work sensibly. Fgetc should be used instead.
Because of possible differences in word length and byte ordering, files written using putw are
machine-dependent, and may not be read using getw on a different (non-HP-UX) processor.

Hewlett-Packard -2- July 2, 1985

GETCWD (3C) GETCWD (3C)

NAME
getcwd - get path-name of current working directory

SYNOPSIS
char sgetcwd (buf, size)
char *buf;
int size;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Getcwd returns a pointer to the current directory path-name. The value of size must be at least
two greater than the length of the path-name to be returned.
If bufis a NULL pointer, getcwd will obtain size bytes of space using malloc(3C). In this case, the
pointer returned by getcwd may be used as the argument in a subsequent call to free.
The function is implemented by using popen(3S) to pipe the output of the pwd(1) command into
the specified string space.

EXAMPLE
char *cwd, *getewd();

if ((ewd = getewd((char *)NULL, 64)) == NULL) {
perror(‘‘pwd”’);
exit(1);

}
printf(“%s\n”, cwd);

SEE ALSO
pwd(1), malloc(3C), popen(3S).

DIAGNOSTICS
Returns NULL with errno set if size is not large enough, or if an error ocurrs in a lower-level
function.

Hewlett—Packard -1- July 2, 1985

GETENV (3C)

NAME
getenv - return value for environment name

SYNOPSIS
char *getenv (name)
char *name;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION

GETENV (3C)

Getenv searches the environment list (see environ(7)) for a string of the form name=value, and
returns a pointer to the walue in the current environment if such a string is present, otherwise a
NULL pointer. Name may be either the desired name, null-terminated, or of the form

name=value, in which case getenv uses the portion to the left of the

SEE ALSO
exec(2), putenv(3C), environ(5).

Hewlett-Packard -1-

" as the search key.

July 2, 1985

GETFSENT (3X) GETFSENT (3X)

NAME

getfsent, getfsspec, getfsfile, getfstype, setfsent, endfsent - get file system descriptor file entry

HP-UX COMPATIBILITY

Level: Large Machine/HP Extension
Origin: HP and UCB

SYNOPSIS

#include <checklist.h>
struct checklist *getfsent()

struct checklist *getfsspec(spec)
char *spec;

struct checklist *getfsfile(file)
char *file;

struct checklist *getfstype(type)
char *type;

int setfsent()
int endfsent()

DESCRIPTION

FILES

Getfsent, getfsspec, getfsfile, and getfstype each return a pointer to an object with the following
structure containing the broken—out fields of a line in the /etc/checklist file. The structure is
declared in the <checklist.h> header file:

struct checklist{
char *fs_spec; /* special file name */
char *fs_bspec; /* block special file name */
char *fs_file; /* file sys directory name */
char *fs_type; /* type: ro, rw, sw, xx ¥/
int fs__passno; /* fsck pass number */
int fs_freq; /* backup frequency */
h
The fields have meanings described in checklist(5). If the block special file name, the file system
directory name, the type and the pass number are not all defined on the associated line in
/ete/checklist, these routines will return pointers to NULL in the fs_bspec, fs_file and fs_type
fields and -1 in the fs_passno field. Fs_freq is reserved for future use. If the fs_freq field is not
present on the line these routines will return —1 in the fs_freq field.

Getfsent reads the next line of the file, opening the file if necessary.
Setfsent opens and rewinds the file.
Endfsent closes the file.

Getfsspec and getfsfile sequentially search from the beginning of the file until a matching special
file name or file system file name is found, or until EOF is encountered. Getfstype does likewise,
matching on the file system type field.

/ete/checklist

SEE ALSO

checklist(5)

DIAGNOSTICS

Null pointer (0) returned on EOF, invalid entry or error.

Hewlett—Packard -1- July 2, 1985

GETFSENT (3X) GETFSENT (3X)

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

Hewlett—Packard -2- July 2, 1985

GETGRENT (3C) GETGRENT (3C)

NAME

getgrent, getgrgid, getgrnam, setgrent, endgrent, fgetgrent - get group file entry

SYNOPSIS

#include <grp.h>
struct group *getgrent ()

struct group *getgrgid (gid)
int gid;

struct group *getgrnam (name)
char #name;

void setgrent ()
void endgrent ()

struct group *fgetgrent (f)
FILE +f;

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: System V

DESCRIPTION

FILES

Getgrent, getgrgid and getgrnam each return pointers to an object with the following structure
containing the broken-out fields of a line in the /etc/group file. Each line contains a “group”
structure, defined in the <grp.h> header file.

struct group {
char «gr_name; /* the name of the group x/
char *gr__passwd,; /* the encrypted group password */
int gr_gid; /* the numerical group ID */
char **gr_mem,; /* vector of pointers to member names */
I8

Getgrent when first called returns a pointer to the first group structure in the file; thereafter, it
returns a pointer to the next group structure in the file; so, successive calls may be used to search
the entire file. Getgrgid searches from the beginning of the file until a numerical group id match—
ing gid is found and returns a pointer to the particular structure in which it was found. Get-
grnam searches from the beginning of the file until a group name matching name is found and
returns a pointer to the particular structure in which it was found. If an end-of-file or an error is
encountered on reading, these functions return a NULL pointer.

A call to setgrent has the effect of rewinding the group file to allow repeated searches. Endgrent
may be called to close the group file when processing is complete.

Fgetgrent returns a pointer to the next group structure in the stream f, which matches the format
of /etc/group.

/ete/group

SEE ALSO

getlogin(3C), getpwent(3C), group(5).

DIAGNOSTICS

A NULL pointer is returned on EOF or error.

WARNING

The above routines use <stdio.h>, which causes them to increase the size of programs, not oth—
erwise using standard I/O, more than might be expected.

Hewlett—Packard -1- July 2, 1985

GETGRENT (3C) GETGRENT (3C)

BUGS
All information is contained in a static area, so it must be copied if it is to be saved.

Hewlett—Packard -2- July 2, 1985

GETLOGIN (3C) GETLOGIN (3C)

NAME
getlogin - get login name

SYNOPSIS
char #getlogin ();

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: System V

DESCRIPTION
Getlogin returns a pointer to the login name as found in /etc/utmp. It may be used in conjunc-
tion with getpwnam to locate the correct password file entry when the same user ID is shared by
several login names.

If getlogin is called within a process that is not attached to a terminal, it returns a NULL pointer.
The correct procedure for determining the login name is to call cuserid, or to call getlogin and if it
fails to call getpwuid.

FILES

/ete/utmp
SEE ALSO

cuserid(3S), getgrent(3C), getpwent(3C), utmp(5).
DIAGNOSTICS

Getlogin returns the NULL pointer if name is not found.

BUGS
The return values point to static data whose content is overwritten by each call.

Hewlett—Packard -1- July 2, 1985

GETMSG (3C) GETMSG (3C)

NAME
getmsg - get message from a catalog
SYNOPSIS
char *getmsg (fd, set_num, msg_num, buf, buflen)
int fd, set_num, msg num, buflen;
char buf[];
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: HP
Native Language Support:
8-bit data, customs, messages
DESCRIPTION
Getmsg attempts to read up to buflen—1 bytes of a message string into the area pointed to by buf.
A null byte is inserted to terminate the string placed in the buffer.

Fd is the file descriptor returned by a call to open(2) the catalog containing the messages.
Set_num is available to group messages together into a logical unit. For instance, messages in
Finnish could be grouped in set number 6 to match the language id for Finnish (See
currlangid(3C) and langid(7)).

DIAGNOSTICS
Returns a pointer to an empty (null) string if fd is invalid or set_num or msg_num is not in the
catalog.

SEE ALSO
gencat(1), insertmsg(1), read(2), hpnls(7).

Hewlett-Packard -1- July 2, 1985

GETOPT(3C) GETOPT (3C)

NAME
getopt, optarg, optind, opterr - get option letter from argument vector

SYNOPSIS
int getopt (arge, argv, optstring)
int argc;
char #*argv, xopstring;

extern char *optarg;
extern int optind, opterr;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Getopt returns the next option letter in argv (starting from argv/1]) that matches a letter in opi-
string. Optstring is a string of recognized option letters; if a leiter 15 [oilowed by a colon, the
option is expected to have an argument that may or may not be separated from it by white space.
Optarg is set to point to the start of the option argument on return from getopt.

Getopt places in optind the argv index of the next argument to be processed. Because optind is
external, it is normally initialized to zero automatically before the first call to getopt.

When all options have been processed (i.e., up to the first non-option argument), getopt returns
EOF. The special option -- may be used to delimit the end of the options; EOF will be returned,
and -- will be skipped.

DIAGNOSTICS
Getopt prints an error message on stderr and returns a question mark (?) when it encounters an
option letter not included in optstring. This error message may be disabled by setting opterr to
Z€ero.

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of programs, not otherwise
using standard I/O, more than might be expected.

Options can be any ASCII characters except colon (:), question mark (?), or null (\0). It is
impossible to distinguish between a ? used as a legal option, and the character that getopt returns
when it encounters an invalid option character in the input.

EXAMPLE
The following code fragment shows how one might process the arguments for a command that can
take the mutually exclusive options a and b, and the options f and o, both of which require argu—
ments:

main (arge, argv)

int arge;

char xxargv;

{
int c;
extern char *optarg;
extern int optind;

while ((¢ = getopt(arge, argv, “abf:o:”)) != EOF)
switch (c) {
case ’a’:
if (bflg)
errflg++;

Hewlett—Packard -1- July 2, 1985

GETOPT (3C)

case

case
case
case

}
if (errflg) {

else
aflg++;
break;
b
if (aflg)
errflg++;
else
bproc();
break;
.
ifile = optarg;
break;

LI

o’
ofile = optarg;
break;

’? 7:

errflg++;

fprintf(stderr, "usage: . . . ");
exit (2);

for (; optind < arge; optind++) {
if (access(argvloptind], 4)) {

}

SEE ALSO
getopt(1).

Hewlett-Packard

GETOPT (3C)

July 2, 1985

GETPASS (3C) GETPASS(3C)

NAME
getpass - read a password

SYNOPSIS
char *getpass (prompt)
char *prompt;

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: System V

DESCRIPTION
Getpass reads up to a newline or EOF from the file /dev/tty, after prompting on the standard
error output with the null-terminated string prompt and disabling echoing. A pointer is returned
to a null-terminated string of at most 8 characters. If /dev/tty cannot be opened, a NULL
pointer is returned. An interrupt will terminate input and send an interrupt signal to the calling
program before returning.

FILES
/dev/tty

SEE ALSO
crypt(3C).

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of programs not otherwise
using standard I/O, more than might be expected.

BUGS
The return value points to static data whose content is overwritten by each call.

Hewlett-Packard -1- July 2, 1985

GETPW (3C) GETPW (3C)

NAME

getpw - get name from UID
SYNOPSIS

int getpw (uid, buf)

int uid;

char *bufj
HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS

Origin: System V

DESCRIPTION
Getpw searches the password file for a user id number that equals uid, copies the line of the pass—
word file in which uid was found into the array pointed to by buf, and returns 0. Getpw returns
non-zero if uid cannot be found. The line is null-terminated.
This routine is included only for compatibility with prior systems and should not be used; see
getpwent(3C) for routines to use instead.

FILES
/ete/passwd

SEE ALSO

getpwent(3C), passwd(5).
DIAGNOSTICS

Getpw returns non-zero on error.

WARNING
The above routine uses <stdio.h>, which causes it to increase, more than might be expected, the
size of programs not otherwise using standard I/0.

Hewlett-Packard -1- July 2, 1985

GETPWENT (3C) GETPWENT (3C)

NAME

getpwent, getpwuid, getpwnam, setpwent, endpwent, fgetpwent - get password file entry

SYNOPSIS

#include <pwd.h>

struct passwd *getpwent ()
struct passwd *getpwuid (uid)
int uid;

struct passwd #getpwnam (name)
char *name;

void setpwent ()

void endpwent ()

struct passwd #fgetpwent (f)
FILE *f;

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: System V

DESCRIPTION

Getpwent, getpwuid and getpwnam each returns a pointer to an object with the following struc-
ture containing the broken—out fields of a line in the /etc/passwd file. Each line in the file con-
tains a ‘“‘passwd’” structure, declared in the <pwd.h> header file:

struct passwd {

char *pW__name;
char *pw__passwd;
int pw__uid;
int pw_gid;
char *pW__age;
char *pwW__comment;
char *DW__gecos;
char *pw__dir;
char *pw_shell;

h

struct comment {
char *c_dept;
char *C_lame;
char *c__acct;
char *C__bin;

b

This structure is declared in <pwd.h> so it is not necessary to redeclare it.
The pw_comment field is unused; the others have meanings described in passwd(5).

Getpwent when first called returns a pointer to the first passwd structure in the file; thereafter, it
returns a pointer to the next passwd structure in the file; so successive calls can be used to search
the entire file. Getpwuid searches from the beginning of the file until a numerical user id match—
ing uid is found and returns a pointer to the particular structure in which it was found.
Getpwnam searches from the beginning of the file until a login name matching name is found, and
returns a pointer to the particular structure in which it was found. If an end-of-file or an error is
encountered on reading, these functions return a NULL pointer.

A call to setpwent has the effect of rewinding the password file to allow repeated searches.
Endpwent may be called to close the password file when processing is complete.

Hewlett—Packard -1- July 2, 1985

GETPWENT (3C) GETPWENT (3C)

Fgetpwent returns a pointer to the next passwd structure in the stream f, which matches the for-
mat of /etc/passwd.

FILES

/ete/passwd
SEE ALSO

getlogin(3C), getgrent(3C), passwd(4).
DIAGNOSTICS

A NULL pointer is returned on EOF or error.

WARNING
The above routines use <stdio.h>, which causes them to increase the size of programs, not oth—
erwise using standard I/O, more than might be expected.

BUGS
All information is contained in a static area, so it must be copied if it is to be saved.

Hewlett—Packard -2- July 2, 1985

GETS(38) GETS(3S)

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include <stdio.h>

char *gets (s)
char #*s;

char xfgets (s, n, stream)
char *s;

int n;

FILE #stream;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION
Gets reads characters from the standard input stream, stdin, into the array pointed to by s, until

a new-line character is read or an end-of-file condition is encountered. The new-line character is
discarded and the string is terminated with a null character.

Fgets reads characters from the siream into the array pointed to by s, until n-1 characters are
read, or a new-line character is read and transferred to s, or an end-of-file condition is encoun—
tered. The string is then terminated with a null character.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), puts(3S), scanf(3S).

DIAGNOSTICS
If end-of-file is encountered and no characters have been read, no characters are transferred to s
and a NULL pointer is returned. If a read error occurs, such as trying to use these functions on a
file that has not been opened for reading, a NULL pointer is returned. Otherwise s is returned.

Hewlett-Packard -1- July 2, 1985

GETUT (3C) GETUT(3C)

NAME
getutent, getutid, getutline, pututline, setutent, endutent, utmpname - access utmp file entry

SYNOPSIS
#include <types.h>
#include <utmp.h>

struct utmp *getutent ()

struct utmp *getutid (id)
struct utmp #*id;

struct utmp #*getutline (line)
struct utmp #line;

void pututline (utmp)
struct utmp *utmp;

void setutent ()
void endutent ()

void utmpname (file)
char #file;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Getutent, getutid and getutline each return a pointer to a structure of the following type:

struct utmp {
char ut_user|8]; /* User login name */
char ut_id[4]; /* /etc/inittab id (usually line #) =/
char ut_line[12]; /* device name (console, Inxx) */
short ut_pid; /* process id */
short ut_type; /* type of entry %/
struct exit_status {
short e_termination; /% Process termination status %/
short e_exit; /* Process exit status %/
} ut_exit; /* The exit status of a process
* marked as DEAD_PROCESS. */
time__t ut_time; /# time entry was made */
b

Getutent reads in the next entry from a utmp-like file. If the file is not already open, it opens it.
If it reaches the end of the file, it fails.

Getutid searches forward from the current point in the utmp file until it finds an entry with a
ut__type matching id->ut_type if the type specified is RUN_LVL, BOOT_TIME, OLD_TIME or
NEW_TIME. If the type specified in id is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS or
DEAD_PROCESS, then getutid will return a pointer to the first entry whose type is one of these
four and whose ut_id field matches id->ut_id. If the end of file is reached without a match, it
fails.

Getutline searches forward from the current point in the utmp file until it finds an entry of the
type LOGIN_PROCESS or USER_PROCESS which also has a wut_line string matching the
line->ut__line string. If the end of file is reached without a match, it fails.

Pututline writes out the supplied utmp structure into the utmp file. - It uses getutid to search for—
ward for the proper place if it finds that it is not already at the proper place. It is expected that

Hewlett-Packard -1- July 2, 1985

GETUT (3C) GETUT (3C)

normally the user of pututline will have searched for the proper entry using one of the getut rou-
tines. If so, pututline will not search. If pututline does not find a matching slot for the new entry,
it will add a new entry to the end of the file.

Setutent resets the input stream to the beginning of the file. This should be done before each
search for a new entry if it is desired that the entire file be examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file examined, from /etc/utmp to any
other file. It is most often expected that this other file will be /etc/wtmp. If the file does not
exist, this will not be apparent until the first attempt to reference the file is made. Utmpname
does not open the file. It just closes the old file if it is currently open and saves the new file name.

FILES
/etc/utmp
Jete/wtmp

SEE ALSO
ttyslot(3C), utmp(4).

DIAGNOSTICS
A NULL pointer is returned upon failure to read, whether for permissions or having reached the
end of file, or upon failure to write.

COMMENTS

The most current entry is saved in a static structure. Multiple accesses require that it be copied
before further accesses are made. Each call to either getutid or getutline sees the routine examine
the static structure before performing more I/O. If the contents of the static structure match
what it is searching for, it looks no further. For this reason to use getutline to search for multiple
occurrences, it would be necessary to zero out the static after each success, or getutline would just
return the same pointer over and over again. There is one exception to the rule about removing
the structure before further reads are done. The implicit read done by pututline (if it finds that it
is not already at the correct place in the file) will not hurt the contents of the static structure
returned by the getutent, getutid or getutline routines, if the user has just modified those contents
and passed the pointer back to pututline.

These routines use buffered standard 1/0 for input, but pututline uses an unbuffered non-standard
write to avoid race conditions between processes trying to modify the utmp and wimp files.

Hewlett—Packard -2- July 2, 1985

GPIO_GET_STATUS(3I) GPIO_GET_STATUS (3I)

NAME
gpio__get_status — return status lines of GPIO card

SYNOPSIS
int gpio_get_status (eid)
int eid;

HP-UX COMPATIBILITY
Level: Device I/0 Library - HP-UX/EXTENDED
Origin: HP

DESCRIPTION
Gpio__get__status enables you to read the status register of the GPIO interface associated with the
device file identified by eid. Eid is an entity identifier of an open GPIO device file obtained from
an open(2), dup(2), fentl(2), or creat(2). The current state of each status line on the interface
card is mapped to the value returned, with STSO mapped to the least significant bit. Only z
least-significant bits are used, where z is the number of status lines available on the hardware
interface being used.

HARDWARE DEPENDENCIES
Series 200/300/500
Eid is an integer file descriptor (fildes) that identifies an open device special file.

Series 500:
For the current GPIO card, z is 2.

RETURN VALUE
Gpio__get__status returns the value of the status register of the GPIO interface associated with eid,
and -1 if an error was encountered.

DIAGNOSTICS
Gpio__get_status fails under the following conditions and sets errno (see errno(2)) to the value in
square brackets:

eid does not refer to an open file [EBADF];
eid does not refer to a GPIO device file [ENOTTY].

Hewlett-Packard -1- November 15, 1985

GPIO_SET_CTL(3I) GPIO_SET_CTL(3I)

NAME
gpio_set__ct] — set control lines on GPIO card
SYNOPSIS

int gpio_set_ctl (eid, value)
int eid, value;

HP-UX COMPATIBILITY
Level: Device I/0 Library — HP-UX/EXTENDED
Origin: HP
DESCRIPTION
Gpio_set_ctl enables you to set the control register of a GPIO interface. FEid is an entity

identifier of an open GPIO device file obtained from an open(2), dup(2), fentl(2), or creat(2) call.
Value is the value to be written into the control register of the GPIO interface associated with eid.

Value is mapped onto the control lines on the interface card, with the least significant bit mapped
to CTLO. Only the z least significant bits are used, where z is the number of control lines avail-
able on the hardware interface being used.

HARDWARE DEPENDENCIES
Series 200/300/500
FEid is an integer file descriptor (fildes) that identifies an open device special file.

Series 500:
For the current GPIO card, z is 2.

RETURN VALUE
Gpio_set__ctl returns 0 if successful, and -1 if an error was encountered.

DIAGNOSTICS
Gpio_set_ctl fails under the following circumstances and sets errno (see errno(2)) to the value in
square brackets:

etd does not refer to an open file [EBADF);
etd does not refer to a GPIO device file [ENOTTY].

Hewlett-Packard -1- November 15, 1985

HPIB_ABORT (31) HPIB_ABORT (3I)

NAME
hpib__abort — stop activity on specified HP-IB bus

SYNOPSIS
int hpib_abort (eid);
int eid;
HP-UX COMPATIBILITY
Level: Device 1/O Library - HP-UX/EXTENDED
Origin: HP
DESCRIPTION
Hpib__abort terminates activity on the addressed HP-IB bus by pulsing the IFC line. Eid is an

entity identifier of an open HP-IB raw bus device file obtained from an open(2), dup(2), fentl(2),
or creat(2) call.

Hpib__abort also sets the REN line and clears the ATN line. The status of the SRQ line is not
affected. The interface must be the system controller of the bus.

RETURN VALUE
Hpib_abort returns 0 (zero) if successful, or -1 if an error was encountered.

HARDWARE DEPENDENCIES
Series 200/300/500
Fid is an integer file descriptor (fildes) that identifies an open device special file.

DIAGNOSTICS
Hpib__abort fails under the following circumstances, and sets errno (see errno(2)) to the value in
square brackets:

eid does not refer to an open file [EBADF];
eid does not refer to an HP-IB raw bus device file [ENOTTY];

the specified interface is not the system controller [EIO].

Hewlett-Packard -1- November 15, 1985

HPIB_BUS_STATUS (3I) HPIB_BUS_STATUS (3I)

NAME
hpib_bus__status — return status of HP-IB interface

SYNOPSIS
int hpib__bus_status (eid, status);
int eid, status;

HP-UX COMPATIBILITY
Level: Device I/O Library - HP-UX/EXTENDED

Origin: HP

DESCRIPTION
Hpib__bus__status enables you to determine selected status information about an HP-IB chan-
nel. Eid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2),

dup(2), fentl(2), or creat(2) call. Status is an integer determining what status information is
returned for a particular call. The values defined for status and their associated meanings are:

Value Meaning

0 Is the channel currently in remote state?
What is the current state of the SRQ line?
What is the current state of the NDAC line?
Is the channel currently system controller?

Is the channel currently active controller?

Is the channel currently addressed as talker?
Is the channel currently addressed as listener?
What is the channel’s bus address?

HARDWARE DEPENDENCIES
Series 200/300/500
Eid is an integer file descriptor (fildes) that identifies an open device special file.

Series 500:
A bug in the HP27110A HP-IB interface causes an erroneous report of the state of the
SRQ line. There is a small window when hpib__bus_status(eid, 1) reports that the SRQ
line is clear when in reality it is set. OR-ing together five successive readings of the
state of the SRQ line yields a reading of about 99% accuracy.

N OOt W N

The remote state status is not defined when the interface is the active controller,
although reading remote state status in such a situation is not an error.

Series 200/300:
The status of those lines being driven by the interface is undefined, although reading
them in such a situation is not an error. Non-active controllers cannot sense the SRQ
line. Active listeners cannot sense the NDAC line.

RETURN VALUE
Hpib__bus__status’s return value depends upon the value of status, as follows:

Status Return Value Meaning

— -1 Error condition.
0-6 0 False condition (line is clear).
0-6 1 True condition (line is set).

7 0-30 Bus address of interface card.

Hewlett-Packard -1- November 15, 1985

HPIB_BUS_STATUS(3I) HPIB_BUS_STATUS(3I)

DIAGNOSTICS
Hpib__bus__status fails under the following conditions, and sets errno (see errno(2)) to the value in
square brackets:

eid does not refer to an open file [EBADF];
eid does not refer to an HP-IB raw bus device file [ENOTTY];
status is outside the range [0-7] [EINVAL].

Hewlett-Packard -2- November 15, 1985

HPIB_CARD__PPOLL_RESP (3I) HPIB_CARD_PPOLL_RESP (3I)

NAME
hpib__card__ppoll_resp - control response to parallel poll on HP-IB

SYNOPSIS
int hpib_card_ppoll_resp (eid,flag);
int eid,flag;

HP-UX COMPATIBILITY
Level: Device I/0O Library - HP-UX/EXTENDED
Origin: HP

DESCRIPTION
Hpib_card_ppoll_resp enables an interface to enable (or disable) itself for parallel polls. It
also controls the sense, and determines the line on which the response is sent. This gives the
interface the ability to either ignore or respond to a parallel poll depending upon whether or
not it is enabled to respond.

Eid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2), dup(2),
fentl(2), or creat(2) call. Flagis an integer having one of the following bit patterns:

Bit Pattern Meaning
10000 Disable parallel poll response.
0SPPP Enable parallel poll response, where

S = sense of the response, and
PPP = 3-bit binary number specifying the line on which the
response is sent (0 — 7 octal).
HARDWARE DEPENDENCIES
Series 200/300/500
FEid is an integer file descriptor (fildes) that identifies an open device special file.
Series 500:
Note that the HP 27110A/B HP-IB interface cards do not support programmatic parallel
poll response configuration.
RETURN VALUE
Hpib__card_ppoll_resp returns O (zero) if successful, or -1 if an error was encountered.

SEE ALSO
hpib_ppoll(3I) and hpib_ppoll__resp_ctl(3I).

DIAGNOSTICS
Hpib_card_ppoll__resp fails under the following circumstances, and sets errno (see errno(2)) to
the value in square brackets:

etd does not refer to an open file [EBADF;
eid does not refer to an HP-IB raw bus device file [ENOTTY];

Hewlett-Packard -1- November 15, 1985

HPIB_EOIL_CTL (3I) HPIB_EOI_CTL (3I)

NAME

hpib__eoi__ctl - control EOI mode for HP-IB file
SYNOPSIS

int hpib_eoi_ctl (eid, flag);

int eid, flag;
HP-UX COMPATIBILITY

Level: Device I/O Library - HP-UX/EXTENDED

Origin: HP
DESCRIPTION
Hpib__eoi_ctl enables you to turn EOI mode on or off. Eid is an entity identifier of an open HP-IB

raw device file obtained from an open(2), dup(2), fentl(2), or creat(2) call. Flag is an integer
which, if non-zero, enables EOI mode, and otherwise disables it.

EOI mode causes the last byte of all subsequent write operations to be written out with the EOI
line asserted, signifying the end of the data transmission. By default, EOI mode is disabled when
the device file is opened.

Entity ids for the same device file obtained by separate open(2) requests have their own EOI
modes associated with them. Entity ids for the same device file obtained by dup(2) or inherited
by a fork(2) request share the same EOI mode. In the latter case, if one process enables EOI
mode, then EOI mode is in effect for all such file descriptors.

RETURN VALUE
Hpib_eoi_ctl returns a 0 (zero) if successful, or -1 if an error was encountered.

HARDWARE DEPENDENCIES
Series 200/300/500
Eid is an integer file descriptor (fildes) that identifies an open device special file.

DIAGNOSTICS
Hpib_eoi__ctl fails under any of the following circumstances and sets errno (see errno(2)) to the
value in square brackets:

eid does not refer to an open file [EBADFJ;
eid does not refer to an HP-IB device file [ENOTTY].

Hewlett-Packard -1- November 15, 1985

HPIB_IO (31) HPIB_IO (3I)

NAME
hpib_io - perform I/O with an HP-IB channel from buffers

SYNOPSIS
#include <dvio.h>
int hpib_io(eid, iovec, iolen)
int eid;
struct iodetail *iovec;
int iolen;

HP-UX COMPATIBILITY
Level: Device I/O Library - HP-UX/EXTENDED

Origin: HP
DESCRIPTION
Hpib_io enables you to perform and control read and/or write operations on the specified HP-IB

bus. Eid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2),
dup(2), fentl(2), or creat(2) call. Iovec is a pointer to an array of structures of the form:

struct iodetail {
char mode;
char terminator;
int count;
char *buf;
I&
The ‘odetail structure is defined in the include file libdvio.h. Iolen specifies the number of struc-
tures in tovec.

The mode parameter in the 7odetail structure describes what is to be done during I/O on the
buffer pointed to by buf. Mode is constructed by OR-ing flags from the following list:

Only one of the following two flags must be specified:

HPIBREAD Perform a read of the HP-IB bus, placing data into the accompanying
buffer.

HPIBWRITE Perform a write to the HP-IB bus, using data from the accompanying
buffer.

The following flags may be used in most combinations (not all combinations are valid), or

not at all:

HPIBATN Data is written with ATN enabled.

HPIBEOI Data written is terminated with EOI (this flag is ignored when HPI-
BATN is enabled).

HPIBCHAR Data read is terminated with the character given in the terminator

element of the iodetail structure.

Terminator describes the termination character, if any, that should be checked for on input.
Count is an integer specifying the maximum number of bytes to be transferred.

A read operation terminates when either count is matched, an EOI is detected, or the desig-
nated terminator is detected (if HPIBCHAR is set in mode).

A write operation terminates when count is matched, and the final byte is sent with EOI asserted
(if HPIBEOI is set in mode).

If HPIBATN is set in mode, then write operations occur with ATN enabled. Setting HPIBATN for
aread operation is ignored and has no effect.

Hewlett-Packard -1- November 15, 1985

HPIB_IO (31) HPIB_IO (31)

The members of the iovec array are accessed in order.

RETURN VALUES
If all transactions are successful, Apib_io returns a zero and updates the count element in each
structure in the fovec array to reflect the actual number of bytes read or written.

If an error is encountered during a transaction defined by an element of iovec, hpib_io
returns without completing any transactions that might follow. In particular, if an error occurs,
hpib_io returns a —1, and the count element of the transaction which caused the error is set to —1.

HARDWARE DEPENDENCIES
Series 200/300/500
FEid is an integer file descriptor (fildes) that identifies an open device special file.

DIAGNOSTICS
Hpib_io fails under any of the following circumstances, and sets errno (see errno(2)) to the value
in square brackets:

eid does not refer to an open file [EBADF];
eid does not refer to an HP-IB raw bus device file [ENOTTY];
a timeout occurs [EIO];

etd is not the active controller [EIO].

Hewlett-Packard -2- November 15, 1985

HPIB_PASS_CTL (3I) HPIB_PASS_CTL(3I)

NAME
hpib__pass__ctl — change active controllers on HP-IB

SYNOPSIS
int hpib_pass_ctl (eid, ba)
int eid, ba;

HP-UX COMPATIBILITY
Level: Device I/O Library - HP-UX/EXTENDED
Origin: HP

DESCRIPTION
Hpib__pass__ctl passes control of a bus to an inactive controller on that bus. The inactive con-
troller becomes the active controller of that bus. FEid is an entity identifer of an open HP-IB raw
bus device file obtained from an open(2), dup(2), fentl(2), or creat(2) call. Ba is the bus address
of the intended device.
Not all devices can accept control. Pass control passes only active control of the bus. It cannot
pass system control of the bus. The specified interface must be the current active controller
but need not be the system controller. The pass control operation does not suspend your pro-
gram if the inactive controller does not take active control of the bus. However, the interface is
1o longer active controller.

RETURN VALUE
Hpib__pass_ctl returns 0 (zero) if successful, or -1 if an error was encountered.

HARDWARE DEPENDENCIES
Series 200/300,/500
Fid is an integer file descriptor (fildes) that identifies an open device special file.

DIAGNOSTICS
Hpib_pass_ctl fails under any of the following circumstances, and sets errno (see errno(2)) to the
value in square brackets:

etd does not refer to an open file [EBADF];

eid does not refer to an HP-IB raw bus device file [ENOTTY];
the interface is not the active controller [EIO];

ba does not refer to a valid bus address [EINVAL].

Hewlett-Packard -1- November 15, 1985

HPIB_PPOLL (3I) HPIB_PPOLL (3I)

NAME

hpib_ppoll — conduct parallel poll on HP-IB bus
SYNOPSIS

int hpib_ppoll (eid);

int eid;

HP-UX COMPATIBILITY
Level: Device I/O Library - HP-UX/EXTENDED
Origin: HP

DESCRIPTION
Hpib_ppoll conducts a parallel poll on an HP-IB bus. eid is a file descriptor of an open HP-IB raw
bus device file obtained from an open(2), dup(2), fentl(2), or creat(2) call.
Devices enabled to respond and that are in need of service can then assert the appropriate DIO
line. This enables the controller to determine which devices, if any, need service at a given time.

Hpib_ppoll raises attention (ATN) and end or identify (EOI) lines for 25 microseconds before
reading the response. The interface must be the active controller to conduct a parallel poll.

RETURN VALUE
Hpib_ppoll returns an integer value whose least significant byte corresponds to the byte formed
by the 8 data input/output (DIO) lines. Devices enabled to respond to a parallel poll do so on
the appropriate DIO line. DIO line O corresponds to the least significant bit in the response
byte. A -1 return value indicates that an error occurred.

HARDWARE DEPENDENCIES
Series 200/300/500

Eid is an integer file descriptor (fildes) that identifies an open device special file.

DIAGNOSTICS
Hpib_ppoll fails under the following situations, and sets errno (see errno(2)) to the value in
square brackets:

eid does not refer to an open file [EBADF];
eid does not refer to an HP-IB raw bus device file [ENOTTY];

the interface is not current the active controller [EIO].

Hewlett-Packard -1- November 15, 1985

HPIB_PPOLL_RESP_CTL(3I)

NAME
hpib_ppoll_resp_ctl — Define interface parallel poll response

SYNOPSIS
int hpib_ppoll_resp_ctl (eid, response)
int eid, response;

HP-UX COMPATIBILITY
Level: Device I/O Library - HP-UX/EXTENDED

Origin: HP
DESCRIPTION

HPIB_PPOLL_RESP_CTL (3I)

Eid is an entity identifier of an open HP-IB raw bus device file, obtained from an open(2), dup(2),

fentl(2), or creat(2) call.

Hpib_ppoll_resp_ctl defines a response to be sent when an active controller performs a parallel
poll on an HP-IB interface. The value of response indicates whether this computer does or does
not need service. A non-zero response value indicates that service is required. This statement only
sets up a potential response; no actual response if generated when the statement is executed. The
sense of the response and the line number to respond on are set by hpib_card_ppoll _resp(3) or
by the active controller. When first opened, the default response and sense are 0.

RETURN VALUE

Hpib__ppoll_resp_ctl returns 0 if the response is successfully set, or -1 if an error has occured.

HARDWARE DEPENDENCIES
Series 200/300/500

Eid is an integer file descriptor (fildes) that identifies an open device special file.

DIAGNOSTICS

Hpib_ppoll_resp—ctl fails under the following situations, and sets errno (see errno(2)) to the

value in square brackets:
etd does not refer to an open file [EBADF]
eid does not refer to a raw HP-IB device file [ENOTTY]

SEE ALSO
hpib_ppoll(3I), hpib_card_ppoll__resp(3I)

Hewlett-Packard -1-

November 15, 1985

HPIB_REN_CTL (3I) HPIB_REN_CTL (3I)

NAME
hpib_ren__ctl - control the Remote Enable line on HP-IB

SYNOPSIS
int hpib_ren_ctl (eid, flag);
int eid, flag;
HP-UX COMPATIBILITY
Level: Device I/O Library - HP-UX/EXTENDED
Origin: HP
DESCRIPTION
Hpib_ren_ctl enables/disables the Remote Enable (REN) line depending upon the value of
flag. Eid is an entity identifer of an open HP-IB raw bus device file obtained from an open(2),

dup?2), fentl(2),or creat(2)call. Flag is an integer which, if non-zero, enables the REN line, and
otherwise disables it.

Hpib_ren_ctl, in conjunction with hpib_send_cmnd(3), enables you to place devices into the
remote state or local state. The REN line is normally enabled at all times, and is in this state at
power-up. Only the system controller may enable/disable the REN line.

RETURN VALUE
Hpib_ren_ctl returns 0 (zero) if successful, or -1 if an error was encountered.

HARDWARE DEPENDENCIES
Series 200/300/500
Eid is an integer file descriptor (fildes) that identifies an open device special file.

DIAGNOSTICS
Hpib__ren__ctl fails under the following circumstances, and sets errno (see errno(2)) to the value
in square brackets:

eid does not refer to an open file [EBADF];
eid does not refer to an HP-IB raw bus device file [ENOTTY];

the interface is not the system controller [EIO].

Hewlett-Packard -1- November 15, 1985

HPIB_RQST_SRVCE (3I) HPIB_RQST_SRVCE (3I)

NAME
hpib_rqst_srvce — allow interface to enable SRQ line on HP-IB

SYNOPSIS
int hpib_rqst_srvce (eid, cv);
int eid, cv;
HP-UX COMPATIBILITY
Level: Device I/0 Library — HP-UX/EXTENDED
Origin: HP
DESCRIPTION
Hpib__rgst__srvce specifies the response byte that the interface sends when it is serially polled
by the active controller. Eid is an entity identifier of an open HP-IB raw bus device file obtained

from an open(2), dup(2), fentl(2), or creat(2) call. Cv is an integer control value representation of
the desired response byte.

Hpib_rgst_sruce optionally enables the SRQ line depending upon the response byte. If bit 6 of the
response byte is set, the SRQ line is enabled. It remains enabled until the active controller con-
ducts a serial poll or until the computer executes the request function with bit 6 cleared. The
SRQ line is not enabled, however, as long as the interface is active controller. If bit 6 is set, the
interface remembers its response byte, and enables the SRQ line when control is passed to another
device on the bus.

The response byte looks as follows:
Bit Meaning
SPOLL bit (least significant bit of response byte)
SPOLL bit
SPOLL bit
SPOLL bit
SPOLL bit
SPOLL bit
SRQ line
SPOLL bit (most significant bit of response byte)
HARDWARE DEPENDENCIES
Series 200/300/500
Evd is an integer file descriptor (fildes) that identifies an open device special file.
Series 500:
Note that the HP 27110A/B HP-IB interface cards allow only bit 6 to be set. All other
bits remain cleared.
RETURN VALUE
Hpib_rgst_srvce returns 0 (zero) if successful, or -1 if an error was encountered.
DIAGNOSTICS
Hpib__rqst__sruce fails under the following circumstances, and sets errno (see errno(2)) to the
value in square brackets:
etd does not refer to an open file [EBADF];

eid does not refer to an HP-IB raw bus device file [ENOTTY].

N U W= O

Hewlett-Packard -1- November 15, 1985

HPIB_SEND_CMND (3I) HPIB_SEND__CMND (3I)

NAME
hpib_send _cmnd - send command bytes over HP-IB

SYNOPSIS ,
int hpib_send cmnd (eid, ca, length);
int eid, length;
char *ca;

HP-UX COMPATIBILITY
Level: Device I/O Library - HP-UX/EXTENDED
Origin: HP

DESCRIPTION
Hpib__send_cmnd enables you to send arbitrary bytes of information on the HP-IB with the ATN
line asserted. This enables you to configure and control the bus. Eid is an entity identifier of
an open HP-IB raw bus device file obtained from an open(2), dup(2), fentl(2), or creat(2) call. Ca
is a character pointer to a string of bytes to be written to the HP-IB bus as commands. Length is
an integer specifying the number of bytes in the string pointed to by ca.

The interface must currently be the active controller in order to send commands over the
bus.

HARDWARE DEPENDENCIES
Series 200/300/500
Eid is an integer file descriptor (fildes) that identifies an open device special file.

Note that, for all HP-IB interfaces, both built-in and plug-in, the most significant bit of
each byte is overwritten with a parity bit. All commands are written with odd parity.

RETURN VALUE
Hpib_send_cmnd returns 0 (zero) if successful, or -1 if an error was encountered.

DIAGNOSTICS
Hpib_send_cmnd fails under the following circumstances, and sets errno (see errno(2)) to the
value in square brackets:

eid does not refer to an open file [EBADF];
eid does not refer to an HP-IB raw bus device file [ENOTTY];

the interface is not currently the active controller [EIO].

Hewlett-Packard -1- November 15, 1985

HPIB_SPOLL (3I) HPIB_SPOLL (3I)

NAME
hpib__spoll - conduct a serial poll on HP-IB bus

SYNOPSIS
int hpib_spoll (eid, ba);
int eid, ba;

HP-UX COMPATIBILITY
Level: Device I/O Library - HP-UX/EXTENDED
Origin: HP

DESCRIPTION
Hpib_spoll conducts a serial poll of the specified device. Eid is an entity identifier of an open HP-
IB raw bus device file obtained from an open(2), dup(2), fentl(2), or creai(2) call. Ba is the bus
address of the intended device.
Hpib_spoll polls a single device for its response byte. The information stored in the response
byte is device specific with the exception of bit 6. If bit 6 of the response byte is set, the
addressed device has asserted the SRQ line, and is requesting service. (Note that the least
significant (right-most) bit of the response byte is bit 0.)
Not all devices respond to the serial poll function. Consult the device documentation. Specifying
a device that does not support serial polling may cause a timeout error or suspend your pro-
gram indefinitely (see hpib_rgst_sruce(3)). The interface cannot serial poll itself. The inter-
face must be the active controller.

RETURN VALUE
If hpib_spoll is successful, the device response byte is returned in the least significant byte of the
return value. Otherwise, —1 is returned, indicating an error.

HARDWARE DEPENDENCIES
Series 200/300/500
Eid is an integer file descriptor (fildes) that identifies an open device special file.

SEE ALSO
hpib__rqst_srvee(3I).

DIAGNOSTICS
Hpib_spoll fails under the following circumstances, and sets errno (see errno(2)) to the value in
square brackets:

etd does not refer to an open file [EBADF];
eid does not refer to an HP-IB raw bus device file [ENOTTY];

the device polled did not respond before timeout, or the interface is not the active con-
troller [EIO;

ba is the address of the polling interface itself or is an invalid bus address [EINVAL].

Hewlett-Packard -1- November 15, 1985

HPIB_STATUS_WAIT (3I) HPIB_STATUS_WAIT (3I)

NAME
hpib__status_wait — wait until the requested status condition becomes true
SYNOPSIS
int hpib_status_wait (eid, status);
int eid,status;
HP-UX COMPATIBILITY
Level: Device I/O Library - HP-UX/EXTENDED
Origin: HP
DESCRIPTION
Hpib__status_wait enables you to wait until a specific condition has occurred before returning.
Fid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2), dup(2),

fentl(2), or creat(2) call. Status is an integer specifying what information is returned. The possi-
ble values for status and their associated meanings are:

Status Meaning
1 Wait until the SRQ line is enabled.
4 Wait until this channel is the active controller.
5 Wait until this channel is addressed as talker.
6 Wait until this channel is addressed as listener.

The wait is subject to the current timeout in effect. If a timeout occurs before the desired condi-
tion occurs, the function returns with an error.

HARDWARE DEPENDENCIES
Series 200/300/500
Eid is an integer file descriptor (fildes) that identifies an open device special file.

Series 500:
When an hpip__status_wait is in progress, all other bus activity is held off until it has
completed. Therefore, it is strongly recommended that a timeout be in effect before all
hpib__status__wait calls.

RETURN VALUE
Hpib__status_wait returns zero when the condition requested becomes true. A value of -1 is
returned if an error occurs. A -1 is also returned if a timeout occurs before the desired condition
becomes true.

DIAGNOSTICS
Hpib__status_wait fails under the following circumstances, and sets errno (see errno(2)) to the
value in square brackets:

eid does not refer to an open file [EBADF];
eid does not refer to an HP-IB raw bus device file [ENOTTY];
a timeout occured [EIOJ;

status contains an invalid value [EINVAL].

Hewlett-Packard -1- November 15, 1985

HPIB_WAIT_ON_PPOLL (3I) HPIB_WAIT_ON_PPOLL (3I)

NAME
hpib__wait_on__ppoll ~ wait until a particular parallel poll value occurs

SYNOPSIS
int hpib_wait_on_ppoll (eid, mask, sense);
int eid, mask, sense;

HP-UX COMPATIBILITY
Level: Device I/O Library - HP-UX/EXTENDED

Origin: HP
DESCRIPTION
Hpib__wait_on_ppoll waits for a parallel poll response to occur on one or more lines. Eid is an

entity identifier of an open HP-IB raw bus device file obtained from an open(2), dup(2), fentl(2), or
creat(2) call.

Mask is an integer that specifies on which line the parallel poll response is expected. Mask’s value
is obtained from an 8-bit binary number, each bit of which corresponds to one of the eight lines.
For example, if you want to wait for a response on lines 2 or 6, the correct binary number is
01000100. This converts to a decimal equivalent of 68, which is the number you should assign to
mask.

Sense simply specifies what response you are expecting on the selected lines. Sense is constructed
in the same way as mask — eight bits for eight lines. If a bit is set, then the function returns when
the line corresponding that bit is cleared. Similarly, if a bit in sense is clear, the function returns
when the corresponding line is set. Using the previous example, a semse = 00000100 = 4
(decimal) causes the function to return when line 6 is set, and return when line 2 is cleared.

HARDWARE DEPENDENCIES
Series 200/300/500
FEid is an integer file descriptor (fildes) that identifies an open device special file.

Series 500:
When an Apib_wait_on_ppoll is in progress, all other bus activity is held off until it has
completed. Therefore, it is strongly recommended that a timeout be in effect before all
hpib_wait_on__ppoll calls.

RETURN VALUE
Hpib_wait_on_ppoll returns a value of -1 if an error or timeout condition occurs. A successful
completion of the function returns the response byte XOR-ed with the sense value and AND-ed
with the mask.

DIAGNOSTICS
Hpib_wait__on_ppoll fails under the following circumstances, and sets errno (see errno(2)) to the
value in square brackets:

eid does not refer to an open file [EBADF];
eid does not refer to an HP-IB raw bus device file [ENOTTY];
a timeout occured [EIO];

the interface is not currently the active controller [EIO).

Hewlett-Packard -1- November 15, 1985

HSEARCH (3C) HSEARCH (3C)

NAME
hsearch, hereate, hdestroy - manage hash search tables

SYNOPSIS
#include <search.h>

ENTRY #hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION

Hsearch is a hash-table search routine generalized from Knuth (6.4) Algorithm D. It returns a
pointer into a hash table indicating the location at which an entry can be found. Item is a struc—
ture of type ENTRY (defined in the <search.h> header file) containing two pointers: itemn.key
points to the comparison key, and item.data points to any other data to be associated with that
key. (Pointers to types other than character should be cast to pointer-to—character.) Action is a
member of an enumeration type ACTION indicating the disposition of the entry if it cannot be
found in the table. ENTER indicates that the item should be inserted in the table at an
appropriate point. FIND indicates that no entry should be made. Unsuccessful resolution is indi-
cated by the return of a NULL pointer.

Hcreate allocates sufficient space for the table, and must be called before hsearch is used. Nel is
an estimate of the maximum number of entries that the table will contain. This number may be
adjusted upward by the algorithm in order to obtain certain mathematically favorable cir-
cumstances.

Hdestroy destroys the search table, and may be followed by another call to hcreate.

EXAMPLE
The following example will read in strings followed by two numbers and store them in a hash
table, discarding duplicates. It will then read in strings and find the matching entry in the hash
table and print it out.

#include <stdio.h>
#include <search.h>

struct info { /* this is the info stored in the table */
int age, room; /* other than the key. %/
b
#define NUM_EMPL 5000 /* # of elements in search table */
main()
{

/* space to store strings */

char string_space[NUM_EMPL*20];

/* space to store employee info %/
struct info info_space[NUM_EMPL];
/* next avail space in string_space */
char *str_ptr = string_space;

/* next avail space in info_space %/

Hewlett-Packard -1- July 2, 1985

HSEARCH (3C) HSEARCH (3C)

struct info *info__ptr = info__space;
ENTRY item, *found item, shsearch();
/* name to look for in table */

char name__to_find[30];

int i = 0

/* create table %/

(void) hcreate(NUM_EMPL);

while (scanf("%s%d%d”, str_ptr, &info_ptr—>age,
&info_ptr—>room) != EOF && i++ < NUM_EMPL) {
/* put info in structure, and structure in item */
item.key = str_ptr;
item.data = (char *)info_ptr;
str_ptr += strlen(str_ptr) + 1;
info__ptr4++;
/* put item into table %/
(void) hsearch(item, ENTER);

/* access table %/
item.key = name__to_find;
while (scanf("%s”, item.key) != EOF) {
if ((found_item = hsearch(item, FIND)) != NULL) {
/* if item is in the table %/
(void)printf("found %s, age = %d, room = %d\n”",
found_item—>key,
((struct info x)found_item—>data)—>age,
((struct info *)found_item—>data)—>room);
} else {
(void)printf("no such employee %s\n",
name_to_find)

}
}
}
SEE ALSO
bsearch(3C), 1search(3C), malloc(3C), malloc(3X), string(3C), tsearch(3C).
DIAGNOSTICS

Hsearch returns a NULL pointer if either the action is FIND and the item could not be found or
the action is ENTER and the table is full.

Hcreate returns zero if it cannot allocate sufficient space for the table.

WARNING
Hsearch and hereate use malloc(3C) to allocate space.

BUGS
Only one hash search table may be active at any given time.

Hewlett—Packard -2- July 2, 1985

HYPOT (3M)

NAME
hypot - Euclidean distance function

SYNOPSIS
#include <math.h>

double hypot (x, y)
double x, y;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Hypot returns

sqrt(x * x +y *y),

taking precautions against unwarranted overflows.

DIAGNOSTICS

HYPOT (3M)

When the correct value would overflow, hypot returns HUGE and sets errno to ERANGE.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
matherr(3M), sqrt(3F).

Hewlett-Packard

July 9, 1985

INITGROUPS(3C) INITGROUPS (3C)

NAME
initgroups - initialize group access list
SYNOPSIS
initgroups(name, basegid)
char *name;
int basegid;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: UCB

DESCRIPTION
Initgroups reads through the group file and sets up, using the setgroups(2) call, the group access
list for the user specified in name. The basegid is automatically included in the groups list. Typi-
cally this value is given as the group number from the password file.

FILES
/etc/logingroup
SEE ALBO
setgroups(2)
DIAGNOSTICS
Initgroups returns -1 if it was not invoked by the super-user.

BUGS
Initgroups uses the routines based on getgrent(3). If the invoking program uses any of these rou-
tines, the group structure will be overwritten in the call to initgroups.

On most systems, no one seems to keep /etc/logingroup up to date.

Hewlett—Packard -1- July 10, 1985

INTRAPOFF (3M) Series 500 Only INTRAPOFF (3M)

NAME

intrapoff, intrapon - disable/enable integer trap handler

SYNOPSIS

int intrapoff()

int intrapon()

HP-UX COMPATIBILITY

Level: HP-UX/NON-STANDARD
Origin: HP

Remarks: Intrapoff and intrapon are implemented on the Series 500 only.

DESCRIPTION

The Series 500 architecture has a single trap handler for both integer overflow (an integer value
greater than 2°31-1) and integer divide-by-zero. By default, an operation which results in
integer overflow or integer divide-by—zero invokes the integer trap handler. Any integer divide—
by-zero generates the signal SIGFPE. As a side effect, any integer overflow also invokes the
integer trap handler. The trap handler recognizes integer overflow as a special case and simply
returns to the calling routine. A user sees no difference in results, but could see a severe perfor—
mance degradation depending on how often the trap handler is invoked.

Intrapoff disables this integer trap handler. Integer overflow and integer divide-by-zero do not
invoke the integer trap handler. Instead, integer divide-by—zero returns a large integer (2°31-1).
Integer overflow operations simply overflow into the most significant bit. There is no performance
penalty since the trap handler is not entered.

A program doing many integer overflows could see a significant performance improvement. A
user must take care however, since integer divide-by—zero does not give signal SIGFPE while the
integer trap handler is disabled.

Intrapon restores the default condition. Integer divide-by-zero and integer overflow operations
invoke the integer trap handler. Integer divide-by—zero gives signal SIGFPE; integer overflow
results in a performance penalty caused by entering and leaving the integer trap handler.

When intrapoff is used, the integer trap handler is disabled at that procedural level and all levels
below it. It is not disabled for any procedural level above the procedure within which intrapoff
was called. For example,

?()i
b(); /* Call function b. */
}
b();
{
intrapoff();
c(); /* Call function c. */
c()s
{
/* Do some work. */
}

The integer trap handler is disabled for functions b and c. It is automatically re-enabled on exit
from function b. The integer trap handler can also be re-enabled at any time using intrapon.

EXAMPLES

The math library routine rand generates random integers using:

Hewlett—Packard -1- July 19, 1985

INTRAPOFF (3M) Series 500 Only INTRAPOFF (3M)

randx = randx * (((1103515245L + 12345)>>16) & OxTiff)

where randx is an unsigned integer. The value assigned to randx is often greater than 2°31-1.
To avoid the performance degradation of entering the integer trap handler each time this occurs,
the integer trap can be turned off before the assignment using intrapoff.

Hewlett—Packard -2- July 19, 1985

IO_BURST (3I) Series 200/300 Only IO_BURST (3I)

NAME
io_burst — perform low overhead I/O with an HP-IB channel

SYNOPSIS
#include <dvio.h>
io_burst (eid, flag)

HP-UX COMPATIBILITY
Level: Device I/O Library-HP-UX/EXTENDED NON-STANDARD

Origin: HP
Remarks: Jo_burst is implemented on the Series 200/300 only.
DESCRIPTION

Io__burst enables you to perform low-overhead burst transfers on the specified HP-IB bus. FEid is
the entity identifier for an open HP-IB bus device file returned by a previous call to open(2),
dup(2), creat(2) or to fentl(2) with an F_DUPD command option. Flag is an integer which, if
non-zero, enables burst mode, and otherwise disables it.

In burst mode, memory-mapped 1/O address space assigned to the interface card select code is
mapped directly into user address space such that the user can transfer data directly to or from
the interface card. This eliminates the need for kernel calls and their associated overhead . Burst
mode affects only read(2), write(2), hpib—io($), and hpib_send _cmnd(3) calls. All other opera-
tions are unaffected. When burst mode is enabled, the interface is locked and no other processes
are allowed to use the interface until burst mode is disabled.

HARDWARE DEPENDENCIES
Series 200/300/500
Eid is an integer file descriptor (fildes) that identifies an open device special file.

Timeouts for read(2), write(2), hpib_io(3), and hpib_send_cmnd(3) do not work while
in burst mode. However, these commands can be interrupted by signals.

RETURN VALUE
Io__burst returns zero if successful or —1 if an error was encountered.

DIAGNOSTICS
To__burst fails under any of the following circumstances and sets errno (see errno(2)) to the value
in square brackets:

eid does not refer to an open file [EBADF];
eid does not refer to an HP-IB bus device file [ENOTTY];
a timeout occurs [EIO];

WARNING
Enabling burst mode locks the interface and should not be used with any interface supporting a
system disc or swap device.

SEE ALSO
read(2), write(2), hpib_io(3I), hpib_send__cmnd(3I)

Hewlett-Packard -1- November 18, 1985

IO_EOL_CTL (3I) I0_EOL_CTL(3I)

NAME
io__eol__ctl — set up read termination character on special file

SYNOPSIS
int io_eol _ctl (eid, flag, match);
int eid, flag, match;

HP-UX COMPATIBILITY
Level: Device I/O Library - HP-UX/EXTENDED

Origin: HP
DESCRIPTION

Jo__eol_ctl enables you to specify a character to be used in terminating a read operation from
the specified file id.

FEid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2), dup(2),
fentl(2), or creat(2) call. Flag is an integer which enables or disables character-match termina-
tion. A non-zero value enables character-match termination, while a zero value disables it. Match
is an integer containing the numerical equivalent of the termination character. Match is ignored if
flag is zero. When in 8-bit mode, the lower 8 bits of match are used as the termination character.
In 16-bit mode, the lower 16 bits are used.

Upon opening a file, the default condition is character-match termination disabled. When
enabled, the character specified by match is checked for during read operations. The read is ter-
minated upon receipt of this character, or upon any of the other termination conditions normally
in effect for this file. Examples of other conditions are satisfying the specified byte count, and
receiving a character when the EOI line is asserted (HP-IB). When the read is terminated by a
match character, this character is the last character returned in the buffer.

File descriptors for the same device file obtained by separate open(2) requests have their own ter-
mination characters associated with them. File descriptors for the same device file inherited by a
fork(2) request share the same termination character. In the latter case, if one process changes
the termination character, the new termination character is in effect for all such file descriptors.

HARDWARE DEPENDENCIES
Series 200/300/500
Eid is an integer file descriptor (fildes) that identifies an open device special file.

Series 500:
When termination is requested in 16-bit mode, the upper byte of the halfword is exam-
ined first, and then the lower byte. If the lower byte matches the termination character,
all is as expected. However, if the upper byte matches, the following action is taken:

both the upper and lower bytes are moved into the given buffer, and
the count returned is odd, indicating that there is a lower byte following the

matching upper byte. This information is passed to the upper level software to
deal with as it pleases.

RETURN VALUE

To_eol_ctl returns O (zero) if successful, or -1 if an error was encountered.
SEE ALSO

io_width_ctl(3I).

DIAGNOSTICS
To_eol_ctl fails under the following circumstances, and sets errno (see errno(2)) to the value in
square brackets:

eid does not refer to an open file [EBADF);

Hewlett-Packard -1- November 15, 1985

I0_EOL_CTL(3I) IO_EOL_CTL(3I)

eid does not refer to a channel device file [ENOTTY].

Hewlett-Packard -2- November 15, 1985

10_GET_TERM_REASON (3I) I0_GET_TERM_REASON (3I)

NAME
io__get__term_reason — determine how last read terminated

SYNOPSIS
int io_get_term_reason (eid);
int eid;
HP-UX COMPATIBILITY
Level: Device 1/0 Library - HP-UX/EXTENDED
Origin: HP
DESCRIPTION
To__get__term__reason returns the termination reason for the last read made on this file descrip-

tor. Eid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2),
dup(2), fentl(2), or creat(2) call.

All file descriptors descending from an open(2) request (such as from dup(2) or fork(2)) set this
status. For example, if the calling process had opened this file descriptor, and later forked, the
status returned would be from the last read done by either the calling process or its child.

HARDWARE DEPENDENCIES
Series 200/300/500
Eid is an integer file descriptor (fildes) that identifies an open device special file.

Series 500:
If the last read had multiple applicable termination reasons, such as having EOI asserted
on the last byte when that byte was the termination match character (see to_eol_ctl(3)),
the highest numbered reason is used (in this case, 4). Since interactive terminals are
treated as record-oriented devices when they are in cooked mode, the termination reason
is 4 when terminated by a new-line character. If no read has been done on the file
descriptor since it was opened, the termination reason is 0.

Series 200/300:
PSTS is checked only at the beginning of a transfer. An interrupt caused by an EIR will
also terminate a transfer. The termination reason in this case is also 4.
SEE ALSO
io_eol__ctl(3I).
RETURN VALUE

To__get__term__reason returns a value indicating how the last read on the specified file descriptor
was terminated. This value is interpreted as follows (note that combinations are possible):

Value Description
-1 An error was encountered while making this function request.
0 Last read encountered some abnormal termination reason not covered by
any of the other reasons.
1 Last read terminated by reading the number of bytes requested.
2 Last read terminated by detecting the specified termination character.
4 Last read terminated by detecting some device-imposed termination

condition. Examples are: EOI for HP-IB, PSTS line on GPIO, or some other
end-of-record condition, such as the physical end-of-record mark on a 9-track
tape.
DIAGNOSTICS
To__get_term__reason fails under the following circumstances, and sets errno (see errno(2)) to the
value in square brackets:

eid does not refer to an open file [EBADFJ;

Hewlett-Packard -1- November 15, 1985

IO_GET_TERM_REASON (3I) IO_GET_TERM_REASON (3I)

eid does not refer to a channel device file [ENOTTY].

Hewlett-Packard -2- November 15, 1985

IO_INTERRUPT_CTL (31) Series 500 Only
NAME

io_interrupt_ctl — enable/disable interrupts for the associated eid.
SYNOPSIS

int io_interrupt_ctl (eid, enable_flag)
int eid, enable_flag;

HP-UX COMPATIBILITY
Level: Device I/0 Library - HP-UX/EXTENDED

Origin: HP

Remarks: Jo_interrupt_ctl is implemented on the Series 500 only.

DESCRIPTION

IO_INTERRUPT_CTL (3I)

Eid is an entity identifier of an open raw HP-IB bus or GPIO device file, obtained from an open(2),
dup(2), fentl(2), or creat(2) call. Enable_flag is an integer which enables or disables interrupts for

the associated eid. A non-zero value enables interrupts.

Interrupts may be disabled or enabled by the user as desired. When an interrupt occurs for a
given eid, the interrupts associated with this eid are automatically disabled from reoccurring.

Interrupts for this eid can be re-enabled by using to_interrupt_ctl.
RETURN VALUE

i0_interrupt_ctl returns 0 (zero) if successful, or -1 if an error was encountered.

DIAGNOSTICS

To_interrupt_ctl fails under the following situations and sets errno (see errno(2)) to the value in

square brackets:
eid does not refer to an open file [EBADF]

eid does not refer to a device that supports interrupts [ENOTTY]

no interrupt conditions were specified for this eid [EINVAL]

SEE ALSO
10_on_interrupt(3I)

Hewlett-Packard -1-

November 15, 1985

IO_ON_INTERRUPT (3I) Series 500 Only IO_ON_INTERRUPT (3I)

NAME

io__on__interrupt — device interrupt (fault) control

SYNOPSIS

HP-UX

#include <dvio.h>

int (*io_on_interrupt (eid, causevec, handler))()
int eid;

struct interrupt_struct *causevec;

int (*handler)();

handler (eid, causevec)
int eid;
struct interrupt_struct *causevec;

COMPATIBILITY
Level: Device I/O Library — HP-UX/EXTENDED
Origin: HP

Remarks: Jo_on_interrupt is implemented on the Series 500 only.

DESCRIPTION

FEid is an entity identifier of an open raw HP-IB bus or GPIO device file, obtained from an open(2),
dup(2), fentl(2), or creat(2) call.

Causevec is a pointer to a structure of the form:

struct interrupt_struct {
int cause;
int mask;
J&
The interrupt_struct structure is defined in the file dvio.h.

The cause parameter is a bit vector specifying which of the interrupt or fault events will cause the
handler routine to be invoked. The interrupt causes are often specific to the type of interface
being considered. As well, certain exception (error) conditions can be handled using the
i0__on_tnterrupt capability. Specifying a zero-valued cause vector effectively turns off the inter-
rupts for that eid.

The mask parameter is used when an HP-IB parallel poll interrupt is being defined. Mask is an
integer that specifies which parallel poll response lines are of interest. Mask’s value is obtained
from an 8-bit binary number, each bit of which corresponds to one of the eight lines. For example,
if you want an interrupt handler invoked for a response on lines 2 or 6, the correct binary number
is 01000100. This converts to a decimal equivalent of 68, which is the number you should assign to
mask.

When an interrupt that is to be caught occurs during a read, write, open, or ioct! system call on a
slow device (like a terminal; but not a file), during a pause system call, during a sigpause(2) sys-
tem call, or during a wait system call that does not return immediately due to the existence of a
previously stopped or zombie process, the interrupt handling function will be executed and the
interrupted system call will return a -1 to the calling process with errno set to EINTR.

Interrupt handlers are not inherited across a fork(2). All eid for the same device file produced by
dup(2) share the same handler.

An interrupt for a given eid is implicitly disabled after the occurrence of the event. The interrupt
condition can be re-enabled by using to_interrupt_ctl(3I).

Upon the occurrence of an event specified by cause, the receiving process is to execute the inter-
rupt handler function pointed to by handler. When the handler returns the user process resumes
at the point of execution left when the event occurred.

Hewlett-Packard -1- November 15, 1985

IO_ON_INTERRUPT (3I) Series 500 Only IO_ON_INTERRUPT (3I)

Handler will be passed two parameters, the eid associated with the event, and a pointer to a
causevec structure. The cause of the interrupt can be determined by the value returned in the
cause field of the causevec structure. If the interrupt handler was invoked due to a parallel poll
interrupt, then the mask field of the causevec structure will contain the parallel poll response
byte XOR-ed with the sense and AND-ed with the mask

HPIB INTERRUPTS
This section describes interrupt causes specific to an HP-IB device. For an HP-IB device the cause
is a bit vector which is used as follows: To enable a given event, the appropriate bit (in cause),
shown below, must be set to 1:

SRQ SRQ and active controller.
TLK Talker addressed.

LTN Listener addressed.

TCT Controller in charge.

IFC IFC has been asserted
REN Remote enable

DCL Device clear

GET Group execution trigger
PPOLL Parallel poll

GPIO INTERRUPTS
This section describes interrupt causes specific to a gpio device. For a gpio device the cause is a
bit vector which is used as follows. To enable a given event, the appropriate bit (in cause), shown
below, must be set to 1:

EIR External interrupt
SIEO Status line 0
SIE1l Status line 1

HARDWARE DEPENDENCIES
Series 200/300/500
Eid is an integer file descriptor (fildes) that identifies an open device special file.

Series 500:
The 5.0 HP_UX system does not support parallel-poll interrupts. The internal HP-IB
supplied with the Model 550 cannot support talker-addressed, listener-addressed,
controller-in-charge, and remote-enable interrupt. GPIO interrupts on the EIR line are
not supported.

RETURN VALUE
JTo__on__interrupt returns a pointer to the previous handler if the new handler is successfully
installed, otherwise it returns a -1 and errno is set.

DIAGNOSTICS
To_on_interrupt can fail for any of the following reasons:

Fildes does not refer to an open file [EBADF]

Fildes does not refer to a GPIO or a raw HP-IB device file [ENOTTY]
Handler points to an illegal address [EFAULT]

causevec points to an illegal address. [EFAULT]

Hewlett-Packard -2- November 15, 1985

IO_ON_INTERRUPT (3I) Series 500 Only IO_ON_INTERRUPT (3I)

SEE ALSO
io_interrupt_ctl(3I), pause(2), sigpause(2)

Hewlett-Packard -3- November 15, 1985

IO_RESET (3I) IO_RESET (31)

NAME
io_reset — reset an I/O interface

SYNOPSIS
int io_reset (eid);
int eid;
HP-UX COMPATIBILITY
Level: Device I/O Library - HP-UX/EXTENDED
Origin: HP
DESCRIPTION
Jo_reset resets the interface associated with the device file that was opened. The specific actions

performed by Jo_reset are hardware dependent. Eid is an entity identifer of an open raw HP-IB
bus or GPIO device file obtained from an open(2), dup(2), fentl(2), or creat(2) call.

To_reset also causes an interface to go through its self-test, and returns a failure indication if
the interface fails its test.

HARDWARE DEPENDENCIES
Series 200/300/500
FEid is an integer file descriptor (fildes) that identifies an open device special file.
Series 500:
When an HP-IB interface is reset, the interface is returned to its power on state if system
controller, otherwise, the parallel poll response is set to zero and the interrupt mask is set
to zero.

When a GPIO interface is reset, the interfae is returned to its power on state.

Series 200/300:
When an HP-IB interface is reset, the interrupt mask is set to 0, the parallel poll response
is set to 0, the serial poll response is set to 0, the HP-IB address is assigned, the IFC line is
pulsed (if system controller), the card is put on line, and REN is set (if system controller).

When a GPIO interface is reset, the peripheral reset line is pulled low, the PCTL line is
placed in the clear state, and if the DOUT CLEAR jumper is installed, the data out lines
are all cleared. The interrupt enable bit is also cleared.

Interface selftest is not supported.

RETURN VALUE
Io_reset returns 0 (zero) if successful, or -1 if an error was encountered.

DIAGNOSTICS
To_reset fails under any of the following circumstances, and sets errno (see errno(2)) to the value
in square brackets:

eid does not refer to an open file [EBADF];
eid does not refer to an HP-IB raw bus device file [ENOTTY].

Hewlett-Packard -1- November 15, 1985

I0_SPEED_CTL (3I) I0_SPEED_CTL (3I)

NAME
io__speed__ctl — inform system of required transfer speed
SYNOPSIS
int io_speed_ctl (eid, speed);
int eid, speed;
HP-UX COMPATIBILITY
Level: Device I/O Library - HP-UX/EXTENDED
Origin: HP
DESCRIPTION
To__speed__ctl enables you to select the data transfer speed (within the limits of the hardware) for
a data path used for a particular interface. The transfer method (i.e., DMA, fast-handshake)
chosen by the system is determined by the speed requirements.
FEid is an entity identifier of an open HP-IB raw bus device file obtained from an open(2), dup(2),
fentl(2), or creat(2) call. Speed is an integer specifying the data transfer speed in K-bytes per
second (one K-byte equals 1024 bytes).
DEPENDENCIES
Series 200/300/500
Eid is an integer file descriptor (fildes) that identifies an open device special file.
Series 500:
The Series 500 always provides DMA for the fastest possible I/O speed. Therefore,
i0o_speed__ctl(3I) is a nonoperative condition.
Series 200/300:
For values of speed less than 7 the system will use an interrupt transfer. For larger

values DMA will be used if available otherwise the system will use an interrupt transfer.
The default transfer method is DMA.

RETURN VALUE
To__speed__ctl returns 0 if successful, and -1 otherwise.

DIAGNOSTICS
To__speed_ctl fails under the following conditions, and sets errno to the value enclosed in square
brackets:

etd does not refer to an open file [EBADF].
etd does not refer to a supported device file [ENOTTY].

Hewlett-Packard -1- November 15, 1985

IO_TIMEOUT_CTL (31) IO_TIMEOUT_CTL (3I)

NAME

io_timeout_ctl — establish a time limit for I/O operations
SYNOPSIS

int io_timeout_ctl (eid, time);

int eid;

long time;

HP-UX COMPATIBILITY
Level: Device I/O Library - HP-UX/EXTENDED
Origin: HP

DESCRIPTION
To__timeout__ctl enables you to assign a timeout value to the specified file descriptor. Eid is an
entity identifier of an open HP-IB raw bus device file obtained from an open(2), dup(2), fentl(2),
or creat(2) call. Time is a 32-bit integer value specifying the length of the timeout in
microseconds.

This timeout applies to future read and write requests on this file descriptor. If a read or write
request does not complete within the specified time limit, the request is aborted and returns
an error indication. The errno value for a timed-out request is EIO, specifying that a timeout has
occurred.

Although the timeout value is specified in microseconds, the resolution of the timeout is system-
dependent. For example, a particular system might have a resolution of 10 milliseconds, in which
case the specified timeout value is rounded up to the next 10 msec boundary. A timeout value of
zero means that the system never causes a timeout. When a file is opened, a zero timeout value is
assigned by default.

File descriptors for the same device file obtained by separate open(2) requests have their own
timeout values associated with them. File descriptors for the same device file obtained by dup(2)
or inherited by a fork(2) request share the same timeout value. In the latter case, if one process
changes the timeout, the new timeout is in effect for all such file descriptors.

HARDWARE DEPENDENCIES

Series 200/300/500
FEid is an integer file descriptor (fildes) that identifies an open device special file.

Series 500:
The timeout resolution is 10 msec. If an I/O operation is aborted due to a timeout, an
errinfo(2) value of 56 is returned.

Series 200 and 300:
The default timeout for Series 200/300 GPIO interface is 15 seconds. Timeout resolution
is 20 msec.

RETURN VALUE
To__timeout_ctl returns 0 (zero) if successful, or -1 if an error was encountered.

DIAGNOSTICS
To_timeout__ctl fails under the following circumstances, and sets errno (see errno(2)) to the value
in square brackets:

eid does not refer to an open file [EBADF];
eid does not refer to a channel device file [ENOTTY].

Hewlett-Packard -1- November 15, 1985

IO_WIDTH_CTL (3I) IO_WIDTH_CTL (3I)

NAME
io__width__ctl — set width of data path
SYNOPSIS
int io_width_ctl (eid, width)
Ant eid, width;
HP-UX COMPATIBILITY
Level: Device I/O Library - HP-UX/EXTENDED
Origin: HP
DESCRIPTION
To__width__ctl enables you to select the width of the data path to be used for a particular inter-

face. FEid is an entity identifier of an open device file obtained from an open(2), dup(2), fentl(2),
or creat(2) call. Width is an integer specifying the width of the data path in bits.

The allowable widths are system and hardware dependent. An error is given if an invalid width
is specified. Specifying a width with this function sets the width for all users of the device file
associated with the given file descriptor. When first opened, the default width is 8 bits.

HARDWARE DEPENDENCIES
Series 200/300,/500:
For the GPIO interface only widths of 8 and 16 bits are currently supported. For the
HP-IB interface only width of 8 bits is supported.

RETURN VALUE
To__width__ctl returns 0 if successful, and —1 if an error was encountered.

DIAGNOSTICS
To__width_ctl fails under the following circumstances, and sets errno (see errno(2)) to the value in
square brackets:

eid does not refer to an open file [EBADF];
etd does not refer to an HP-IB raw bus device file [ENOTTY].
the specified width is not supported on this device file [EINVAL].

Hewlett-Packard -1- November 15, 1985

L3TOL (3C) L3TOL(3C)

NAME
13tol, 1tol3 - convert between 3-byte integers and long integers
SYNOPSIS
void 13tol (lp, cp, n)
long *lp;
char *cp;
int n;
void 1tol3 (cp, lp, n)
char *cp;
long *lp;
int n;
HP-UX COMPATIBILITY
Level: Bell File System - HP-UX/RUN ONLY
Origin: System V
DESCRIPTION
L38tol converts a list of n three-byte integers packed into a character string pointed to by ¢p into
a list of long integers pointed to by Ip.

Ltol8 performs the reverse conversion from long integers (Ip) to three-byte integers (cp).

These functions are useful for file-system maintenance where the block numbers are three bytes
long.

SEE ALSO
fs(5).

BUGS

Because of possible differences in byte ordering, the numerical values of the long integers are
machine-dependent.

Hewlett—Packard -1- July 2, 1985

LANGINFO(3C)

NAME

LANGINFO (3C)

langinfo, langtoid, idtolang, currlangid - information on user’s native language as given by NLS

SYNOPSIS

#include <langinfo.h>

char *langinfo(langid, item)
int langid, item;

int langtoid(langname)
char *langname;

char *idtolang(langid)

int langid;

int currlangid()

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: HP

Native Language Support:
8-bit data, customs, messages

DESCRIPTION

Langinfo retrieves a null-terminated string containing information unique to a language or cul-
tural area. For example langinfo(currlangid(), DAY_1) returns a pointer to the string “Dom” if
LANG (see environ(7)) is set to “‘portuguese”, and “‘sun” if LANG is set to “finnish”. The fol-
lowing items have been defined.

D_T_FMT
DAY_1
DAY_7
ABDAY_1

ABDAY_7
MON_1

MON_12
ABMON_1

ABMON_12
RADIXCHAR
THOUSEP
YESSTR
NOSTR
CRNCYSTR

string for formatting date(1)

Name of the first day of the week (“Sunday” in English)

Name of the seventh day of the week

Abbreviated name of the first day of the week (“‘Sun” in English)

Abbreviated name of the seventh day of the week

Name of the first month in the Gregorian year

Name of the twelfth month
Abbreviated name of the first month

Abbreviated name of the twelfth month
radix character (“decimal point” in English)
separator for thousands

affirmative response for yes/no questions
negative response for yes/no questions

”

symbeol for currency preceded by -’ if it precedes the number, For example, "—f
would be used for Dutch, "+ Kr” for Danish.

Currlangid looks for a LANG string in the user’s environment. If it finds it, it returns the
corresponding integer listed in langid(7). Otherwise it returns 0 to indicate a default to native—
computer, the method used before Native Language Support (NLS) was available.

Hewlett—Packard

~1- July 2, 1985

LANGINFO(3C) LANGINFO(3C)

Idtolang takes the integer langid and attempts to return the corresponding character string
defined in langid(7). If langid is not found, an empty string is returned.

Langtotd is the reverse of idtolang, trying to convert a string to a language ID, and returning 0 to
indicate native-computer if a match cannot be found.

SEE ALSO
getenv(3C), environ(7), hpnls(7), langid(7).

BUGS
Langinfo returns a pointer to a static area which is overwritten on each call.

Hewlett—Packard -2- July 2, 1985

LOGNAME (3X) LOGNAME (3X)

NAME
logname - return login name of user

SYNOPSIS
char *logname()

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Logname returns a pointer to the null-terminated login name; it extracts the SLOGNAME vari—
able from the user’s environment.

This routine is kept in /lib/libPW.a.

FILES
/etc/profile

SEE ALSO
env(1), login(1), profile(5), environ(7).

BUGS
The return values point to static data whose content is overwritten by each call.

This method of determining a login name is subject to forgery.

Hewlett—Packard -1- July 2, 1985

LSEARCH (3C) LSEARCH (3C)

NAME
Isearch, lfind - linear search and update

SYNOPSIS
char #lsearch ((char *)key, (char *)base, nelp, sizeof(+key), compar)
unsigned #nelp;
int (*compar)();

char #lfind ((char #*)key, (char)base, nelp, sizeof(+key), compar)
unsigned #nelp;
int (*compar)();

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION

Lsearch is a linear search routine generalized from Knuth (6.1) Algorithm S. It returns a pointer
into a table indicating where a datum may be found. If the datum does not occur, it is added at
the end of the table. Key points to the datum to be sought in the table. Base points to the first
element in the table. Nelp points to an integer containing the current number of elements in the
table. The integer is incremented if the datum is added to the table. Compar is the name of the
comparison function which the user must supply (stremp, for example). It is called with two
arguments that point to the elements being compared. The function must return zero if the ele-
ments are equal and non-zero otherwise.

Lfind is the same as Isearch except that if the datum is not found, it is not added to the table.
Instead, a NULL pointer is returned.

NOTES
The pointers to the key and the element at the base of the table should be of type pointer-to-
element, and cast to type pointer-to—character.
The comparison function need not compare every byte, so arbitrary data may be contained in the
elements in addition to the values being compared.
Although declared as type pointer—to-character, the value returned should be cast into type
pointer-to—element.

EXAMPLE
This fragment will read in < TABSIZE strings of length < ELSIZE and store them in a table, elim-
inating duplicates.

#include <stdio.h>

#define TABSIZE 50
#define ELSIZE 120

char line[ELSIZE], tab[TABSIZE|[ELSIZE], *lsearch();
unsigned nel = 0;
int stremp();

while (fgets(line, ELSIZE, stdin) != NULL &&
nel < TABSIZE)
(void) lsearch(line, (char *)tab, &nel,
ELSIZE, stremp);

SEE ALSO
bsearch(3C), hsearch(3C), tsearch(3C).

Hewlett—Packard -1- July 2, 1985

LSEARCH (3C) LSEARCH (3C)

DIAGNOSTICS
If the searched for datum is found, both lsearch and Ifind return a pointer to it. Otherwise, lfind
returns NULL and Isearch returns a pointer to the newly added element.

BUGS
Undefined results can occur if there is not enough room in the table to add a new item.

Hewlett-Packard -2- July 2, 1985

MALLOC (3C) MALLOG (3C)

NAME

malloc, free, realloc, calloc - main memory allocator

SYNOPSIS

char xmalloc (size)
unsigned size;

void free (ptr)
char *ptr;

char srealloc (ptr, size)
char #ptr;
unsigned size;

char xcalloc (nelem, elsize)
unsigned nelem, elsize;

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

Malloc and free provide a simple general-purpose memory allocation package. Malloc returns a
pointer to a block of at least size bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allocated by malloc; after free is per—
formed this space is made available for further allocation, but its contents are left undisturbed.

Undefined results will occur if the space assigned by malloc is overrun or if some random number
is handed to free.

Malloc allocates the first big enough contiguous reach of free space found in a circular search from
the last block allocated or freed, coalescing adjacent free blocks as it searches. It calls sbrk (see
brk(2)) to get more memory from the system when there is no suitable space already free.

Realloc changes the size of the block pointed to by pir to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old sizes.
If no free block of size bytes is available in the storage arena, then realloc will ask malloc to
enlarge the arena by size bytes and will then move the data to the new space.

Realloc also works if ptr points to a block freed since the last call of malloc, realloc, or calloc;
thus sequences of free, malloc and realloc can exploit the search strategy of malloc to do storage
compaction.

Calloc allocates space for an array of nelem elements of size elsize. The space is initialized to
Z€ros.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

SEE ALSO

brk(2), malloc(3X).

DIAGNOSTICS

BUGS

NOTE

Malloc, realloc and calloc return a NULL pointer if there is no available memory or if the arena
has been detectably corrupted by storing outside the bounds of a block. When this happens the
block pointed to by ptr may be destroyed.

Free does not check its pointer argument for validity. When passed a null pointer (value 0), it
causes a memory fault.

Search time increases when many objects have been allocated; that is, if a program allocates but

Hewlett—Packard -1- July 2, 1985

MALLOC(3C) MALLOC (3C)

never frees, then each successive allocation takes longer. For an alternate, more flexible imple-
mentation, see malloc(3X).

Hewlett-Packard -2 - July 2, 1985

MALLOC (3X) MALLOC (3X)

NAME

malloc, free, realloc, calloc, mallopt, mallinfo - fast main memory allocator

SYNOPSIS

#include <malloc.h>

char smalloc (size)
unsigned size;

void free (ptr)
char *ptr;

char #realloc (ptr, size)
char *ptr;
unsigned size;

char xcalloc (nelem, elsize)
unsigned nelem, elsize;

int mallopt (cmd, value)
int cmd, value;

struct mallinfo mallinfo (max)

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V
DESCRIPTION

Malloc and free provide a simple general-purpose memory allocation package, which runs consid-
erably faster than the malloc(3C) package. It is found in the library “malloc”, and is loaded if
the option ‘““-Imalloc” is used with cc(1) or Id(1).

Malloc returns a pointer to a block of at least size bytes suitably aligned for any use.

The argument to free is a pointer to a block previously allocated by malloc; after free is per-
formed this space is made available for further allocation, and its contents will usually have been
destroyed (but see mallopt below for a way to change this behavior).

Undefined results will occur if the space assigned by malloc is overrun or if some random number
is handed to free.

Realloc changes the size of the block pointed to by pir to size bytes and returns a pointer to the
(possibly moved) block. The contents will be unchanged up to the lesser of the new and old sizes.

Calloc allocates space for an array of nelem elements of size elsize. The space is initialized to
ZEros.

Mallopt provides for control over the allocation algorithm. The available values for ¢md are:

M_MXFAST Set mazfast to value. The algorithm allocates all blocks below the size of mazfast
in large groups and then doles them out very quickly. The default value for maz-
fast is 24.

M_NLBLKS Set numiblks to value. The above mentioned ‘large groups’ each contain numlblks
blocks. Numlblks must be greater than 1. The default value for numlblks is 100.

M_GRAIN Set grain to value. The sizes of all blocks smaller than mazfast are considered to
be rounded up to the nearest multiple of grain. Grain must be greater than 0.
The default value of grain is the smallest number of bytes which will allow align—
ment of any data type. Value will be rounded up to a multiple of the default when
grain is set.

M_KEEP Preserve data in a freed block until the next malloc, realloc, or calloc. This option
is provided only for compatibility with the old version of malloc and is not

Hewlett-Packard -1- July 2, 1985

MALLOC (3X) MALLOC (3X)

recommended.
These values are defined in the <malloc.h> header file.
Mallopt may be called repeatedly, but may not be called after the first small block is allocated.

Mallinfo provides instrumentation describing space usage, but may not be called until the first
small block is allocated. The maz argument to mallinfo should always be specified as 0 for com—
patibility with other systems. It returns the structure:

struct mallinfo {

int arena; /* total space in arena */

int ordblks; /* number of ordinary blocks */

int smblks; /* number of small blocks */

int hblkhd; /* space in holding block headers */
int hblks; /* number of holding blocks */

int usmblks; /* space in small blocks in use */
int fsmblks; /* space in free small blocks */

int uordblks; /* space in ordinary blocks in use */
int fordblks; /* space in free ordinary blocks */
int keepcost; /* space penalty if keep option */

/* is used */
}

This structure is defined in the <malloc.h> header file.

Each of the allocation routines returns a pointer to space suitably aligned (after possible pointer
coercion) for storage of any type of object.

SEE ALSO
brk(2), malloc(3C).

DIAGNOSTICS
Malloc, realloc and calloc return a NULL pointer if there is not enough available memory. When
realloc returns NULL, the block pointed to by ptr is left intact. If mallopt is called after any allo—
cation of a small block or if ¢cmd or value are invalid, non-zero is returned. Otherwise, it returns
Zero.

WARNINGS
This package usually uses more data space than malloc(3C).
The code size is also bigger than malloc(3C).
Note that unlike malloc(3C), this package does not preserve the contents of a block when it is
freed, unless the M_KEEP option of mallopt is used.
Undocumented features of malloc(3C) have not been duplicated.

Hewlett-Packard -2- July 2, 1985

MATHERR (3M) MATHERR (3M)

matherr - error-handling function

SYNOPSIS

#include <math.h>

int matherr (x)
struct exception *x;

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

Matherr is invoked by functions in the Math Library when errors are detected. Users may define
their own procedures for handling errors, by including a function named matherr in their pro-
grams. Matherr must be of the form described above. When an error occurs, a pointer to the
exception structure z will be passed to the user-supplied matherr function. This structure, which
is defined in the <math.h> header file, is as follows:

struct exception {
int type;
char *name;
double argl, arg2, retval;
I8
The element type is an integer describing the type of error that has occurred, from the following
list of constants (defined in the header file):

DOMAIN argument domain error
SING argument singularity
OVERFLOW overflow range error
UNDERFLOW underflow range error
TLOSS total loss of significance
PLOSS partial loss of significance

The element name points to a string containing the name of the function that incurred the error.
The variables arg! and arg2 are the arguments with which the function was invoked. Retval is
set to the default value that will be returned by the function unless the user’s matherr sets it to a
different value.

If the user’s matherr function returns non—zero, no error message will be printed, and errno will
not be set.

If matherr is not supplied by the user, the default error-handling procedures, described with the
math functions involved, will be invoked upon error. These procedures are also summarized in the
table below. In every case, errno is set to EDOM or ERANGE and the program continues.

EXAMPLE

#include <math.h>

int
matherr(x)
register struct exception *x;
{
switch (x->type) {
case DOMAIN:
/* change sqrt to return sqrt(-argl), not 0 */
if (Istremp(x->name, “sqrt”)) {
x->retval = sqrt(-x->argl);

Hewlett—Packard -1- July 9, 1985

MATHERR (3M) MATHERR (3M)
return (0); /* print message and set errno */
case SINé:
/* all other domain or sing errors, print message and abort %/
fprintf(stderr, “domain error in %s\n", x->name);
abort();
case PLOSS:
/* print detailed error message */
fprintf(stderr, “loss of significance in %s(%g) = %g\n”,
x->name, x->argl, x->retval);
return (1); /* take no other action */
return (0); /# all other errors, execute default procedure x/
}
DEFAULT ERROR HANDLING PROCEDURES
Types of Errors
type DOMAIN SING OVERFLOW UNDERFLOW TLOSS PLOSS
errno EDOM EDOM ERANGE ERANGE ERANGE ERANGE
BESSEL: - - - - M, 0 *
¥0, y1, yn (arg < 0) M, -H - - - - -
EXP: - - H 0 - -
LOG, LOG10:
(arg < 0) M, -H - N . - .
(arg = 0) - M, -H - - - R
POW: - - +H 0 - -
neg *% non-int M, 0 - - - - -
0 ** non-pos
SQRT: M, 0 - - - - -
GAMMA: - M H H - - -
HYPOT: - - H - - -
SINH: - - +H - - -
COSH: - - H - - -
SIN, COS, TAN: - - - - M, 0 *
ASIN, ACOS, ATAN2: M, 0 - - - - -
ABBREVIATIONS
* As much as possible of the value is returned.
M Message is printed (EDOM error).
H HUGE is returned.
-H -HUGE is returned.
+H HUGE or -HUGE is returned.
0 0 is returned.

Hewlett—Packard

July 9, 1985

MEMORY (3C) MEMORY (3C)

NAME

memccpy, memchr, memcemp, memepy, memset - memory operations

SYNOPSIS

#include <memory.h>

char *memccpy (sl, s2, ¢, n)
char *sl, *s2;
int c, n;

char *memchr (s, ¢, n)
char *s;
int ¢, n;

int memcmp (s, s2, n)
char *sl, *s2;
int n;

char *memcpy (sl, s2, n)
char xs1, *s2;
int n;

char *memset (s, ¢, n)
char *s;
int ¢, n;

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

NOTE

BUGS

These functions operate efficiently on memory areas (arrays of characters bounded by a count, not
terminated by a null character). They do not check for the overflow of any receiving memory
area.

Memccpy copies characters from memory area s2 into sl, stopping after the first occurrence of
character ¢ has been copied, or after n characters have been copied, whichever comes first. It
returns a pointer to the character after the copy of ¢ in s1, or a NULL pointer if ¢ was not found
in the first n characters of s2.

Memchr returns a pointer to the first occurrence of character ¢ in the first n characters of
memory area 8, or a NULL pointer if ¢ does not occur.

Mememp compares its arguments, looking at the first n characters only, and returns an integer
less than, equal to, or greater than 0, according as sl is lexicographically less than, equal to, or
greater than s2. (n less than or equal to zero yields equality). This routine uses unsigned char
for character comparison on HP-UX. This may not be true for other implementatitons.

Memcpy copies n characters from memory area s2 to s1. It returns sl.

Memset sets the first n characters in memory area s to the value of character c¢. It returns s.
For user convenience, all these functions are declared in the optional <memory.h> header file.

Character movement is performed differently in different implementations. Thus overlapping
moves may yield surprises.

Hewlett-Packard -1- July 2, 1985

MKTEMP (3C)

NAME
mktemp - make a unique file name

SYNOPSIS
char *mktemp (template)
char *template;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION

MKTEMP (3C)

Mktemp replaces the contents of the string pointed to by template by a unique file name, and
returns the address of template. The string in template should look like a file name with six trail-
ing Xs; mktemp will replace the Xs with a letter and the current process ID. The letter will be
chosen so that the resulting name does not duplicate the name of an existing file. If there are less
than 6 Xs, the letter will be dropped first, and then high order digits of the process ID will be

dropped.
RETURN VALUE

Mktemp returns its argument except when it runs out of letters, in which case the result is a

o

pointer to the empty string
SEE ALSO

getpid(2).
SEE ALSO

getpid(2), tmpfile(3S), tmpnam(3S).

BUGS
It is possible to run out of letters.

Mktemp does not check to see if the file name part of template exceeds the maximum length of a

file name.

Hewlett—-Packard

July 2, 1985

MONITOR (3C) Series 200 Only MONITOR (3C)

NAME

monitor - prepare execution profile

SYNOPSIS

#include <mon.h>

void monitor (lowpc, highpc, buffer, bufsize, nfunc)
int («lowpc)(), (+highpe)();

WORD xbuffer;

int bufsize, nfunc;

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

Remarks:
Monitor is implemented on Series 200 only.

DESCRIPTION

FILES

An executable program created by cc —p automatically includes calls for monitor with default
parameters; monitor need not be called explicitly except to gain fine control over profiling.

Monitor is an interface to profil(2). Lowpc and highpc are the addresses of two functions; buffer is
the address of a (user supplied) array of bufsiz¢ WORDs (defined in the <mon.h> header file).
Monitor arranges to record a histogram of periodically sampled program counter values and
counts of calls to certain functions in the buffer. The lowest address sampled is that of lowpc and
the highest is just below highpc. Lowpc must not equal 0 for this use of monitor. Not more than
nfunc call counts can be kept; only calls to functions that were compiled with the —p profiling
option of cc(1) are recorded. For results to be significant, especially where there are small,
heavily—used routines, it is suggested that the buffer be no more than a few times smaller than the
range of locations sampled.

To profile the entire program, it is sufficient to use

extern etext();

;I;onitor(2, etext, buf, bufsize, nfunc);

Etext lies just above all the program text (see end(3C)).

To stop execution monitoring and write the results on the file mon.out, use
monitor(0);

Prof(1) can then be used to examine the results.

mon.out

SEE ALSO

cc(1), prof(1), profil(2).

Hewlett—Packard -1- July 10, 1985

NL_CONV (3C) NL_CONV (3C)

NAME

nl_toupper, nl_tolower - translate characters for use with NLS
SYNOPSIS

int nl_toupper (c, langid)

int c, langid;

int nl_tolower (c, langid)

int c, langid;
HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY

Origin: HP

Native Language Support:

8-bit data, customs, messages

DESCRIPTION
These routines are extensions of their counterparts in conv(3C). They function in the same way,
but have a second parameter whose value is expected to be one of the values defined in langid(7).
If langid is not one of these legal values, or if shift information for langid has not been installed,
they function as toupper() and tolower().

SEE ALSO
conv(3C), ascii(7), hpnls(7), kanag8(7), langid(7), roman8(7).

Hewlett-Packard -1- July 2, 1985

NL_CTYPE(3C) NL_CTYPE(3C)

NAME
nl_isalpha, nl_isupper, nl_islower, nl_isalnum, nl_ispunct, nl isprint, nl_isgraph - classify
characters for use with NLS
SYNOPSIS
#include <nl_ctype.h>
int nl_isalpha (c, langid)
int c¢; int langid;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: HP
Native Language Support:
8-bit data, customs, messages
DESCRIPTION
These routines classify character-coded integer values by table lookup. Langid is as defined in
langid(7). Each is a predicate returning non-zero for true, zero for false. All are defined for the

range —1 to 255. If langid is not defined, or if type information for that language is not installed,
isalpha, isupper, etc. will be used, returning 0 for values above octal 0200.

nl_isalpha ¢ is a letter.

nl_isupper ¢ is an upper—case letter.

nl_islower ¢ is a lower—case letter.

nl_isalnum ¢ is an alphanumeric (letter or digit).

nl_ispunct ¢ is a punctuation character (neither control nor alphanumeric).

nl_isprint ¢ is a printing character.

nl_isgraph ¢ is a printing character, like nl_isprint except false for space.
DIAGNOSTICS

If the argument to any of these is not in the domain of the function, the result is undefined.

SEE ALSO
ctype(3C), stdio(3S), ascii(7), hpnls(7) kana8(7), roman8(7).

Hewlett—Packard -1~ July 2, 1985

NL_STRING (3C) NL_STRING (3C)

NAME

stremp8, strnemp8, strepm16, strnemp16 - non ASCII string collation used by NLS

SYNOPSIS

HP-UX

int strcmp8 (sl, s2, langid, status)
unsigned char *sl, *s2;
int langid,*status;

int strncmp8 (sl, s2, n, langid, status)
unsigned char #sl, *s2;
int n, langid, *status;

int strcmp16 (sl1, s2, file_name, status)
unsigned char #sl, *s2, *file_name;
int sstatus;

int strncmpl6 (sl, s2, n, file_name, status)
unsigned char *sl, *s2, xfile_name;
int n, xstatus;

COMPATIBILITY
Level: HP-UX/STANDARD
Origin: HP

Native Language Support:
8-bit and 16-bit data, customs, messages

DESCRIPTION

These functions do not check for overflow of any receiving string.

Stremp8 compares string sI and s2 according to the collating sequence specified by langid (See
langid(7)). An integer greater than, equal to, or less than 0 is returned, according as s is greater
than, equal to, or less than s2. If langid or the collation sequence file is not installed, the native
machine collating sequence is used. Trailing blanks in string sl or s2 are ignored. Strnemp8 makes
the same comparison but looks at most n characters.

Strempl6 compares strings sI and s2 according to the 16-bit collating sequence table in
file_name (See col_seq_16). Strings s! and s2 may contain 16-bit character substrings in 8-bit
canonical form. An integer greater than, equal to, or less than 0, according as s is greater than,
equal to, or less than s2. Strncmp16 makes the same comparison but looks at most n characters.

The integer pointed to by status is set to one of the following non-zero values defined in
/Jusr/include/langinfo.h if an abnormal condition is encountered.

ENOCFFILE - the file /usr/lib/nls/config is missing

ENOCONYV - the entry for the language sought is not in the file /usr/lib/nls/config
ENODIR - the directory /usr/lib/nls/$LANG cannot be accessed

ENOLFILE - the data file /usr/lib/nls/$LANG/collate8 or file_name is missing

EBADREAD - the data file /usr/lib/nls/SLANG/collate8 or file_name exists but seems to be
corrupted

SEE ALSO

col_seq—16(5), col_seq_8(5), hpnls(7), langid(7).

Hewlett-Packard -1- July 2, 1985

NLIST(3C) NLIST (3C)

NAME

nlist - get entries from name list

SYNOPSIS

#include <nlist.h>

int nlist (file-name, nl)
char *file-name;
struct nlist *nl;

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

Remarks:
Nlist is currently implemented on the Series 200 and the Integral PC only.
The use of symbol table type and value information is inherently non-portable. Use of
nlist should reduce the effort required to port a program which uses such information,
but complete portability across all implementations of HP-UX cannot be expected.
DESCRIPTION

NOTES

Nlist examines the name list in the executable file whose name is pointed to by file-name, and
selectively extracts a list of values and puts them in the array of nlist structures pointed to by nl.
The name list nl consists of an array of structures initially containing names of variables; once
nlist has been called, the information is augmented with types and values. The list is terminated
with a null name; that is, a null string is in the name position of the structure. Each variable
name is looked up in the name list of the file. If the name is found, the type and value informa-
tion is inserted into the structure. If the name is not found, the type and value fields are set to
zero. The structure nlist is defined in the include file nlist.h. See a.out(5) and nlist(5) for more
discussion of the symbol table structure.

The file must have the organization and symbol table described for an a.out file in a.out.h(5).
The information is extracted from the symbol table used by the link editor, d(1).

The list of names provided by the caller is in an array of structures, each containing a pointer to a
string giving the name for which information is desired. The rest of the structure contains a type
field, a value field, and possibly other machine specific information which will be filled in by the
nlist call. The list is terminated with a null name pointer. The structure updated by this call is
described in nlist(5). The name pointer in the nlist structure will always be the first field regard—
less of how the other fields may change across implementations.

On machines which have such a file, this subroutine is useful for examining the system name list
kept in the file /hp—ux. In this way programs can obtain system addresses that are up to date.

The <nlist.h> header file is automatically included by <a.out.h> for compatability. However, if
the only information needed from <a.out.h> is for use of nlist, then including <a.out.h> is
discouraged.

SEE ALSO

a.out(5), nlist(5).

DIAGNOSTICS

All nlist structure fields are set to 0 if the file cannot be found or if it is not a valid object file
containing a linker symbol table.

Nlist returns -1 upon error; otherwise it returns 0.

Hewlett—Packard -1- July 2, 1985

PERROR (3C) PERROR (3C)

NAME

perror, errno, sys_errlist, sys_nerr - system error messages

SYNOPSIS

void perror (s)
char #*s;

extern int errno;
extern char *sys_errlist[];

extern int sys_nerr;

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

Native Language Support:
8-bit data, customs, messages

DESCRIPTION

Perror produces a message on the standard error output, describing the last error encountered
during a call to a system or library function. The argument string s is printed first, then a colon
and a blank, then the message and a new-line. To be of most use, the argument string should
include the name of the program that incurred the error. The error number is taken from the
external variable errno, which is set when errors occur but not cleared when non—erroneous calls
are made.

To simplify variant formatting of messages, the array of message strings sys_errlist is provided;
errno can be used as an index in this table to get the message string without the new-line.
Sys_nerr is the largest message number provided for in the table; it should be checked because
new error codes may be added to the system before they are added to the table.

If the user’s LANG shell variable is set, perror also attempts to return a translation of the error
message.

HARDWARE DEPENDENCIES

Series 500:
The error indicator errinfo is implemented in addition to errno, enabling you to obtain a
more detailed description of the error. See errinfo(2).

Translated messages not accessed.

Series 200:
Translated messages not accessed.

SEE ALSO

errinfo(2), errno(2).

Hewlett-Packard -1- July 2, 1985

POPEN (3S) POPEN (3S)

NAME

popen, pclose - initiate pipe I/O to/from a process

SYNOPSIS

#include <stdio.h>

FILE *popen (command, type)
char *command, *type;

int pclose (stream)
FILE *stream;

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

The arguments to popen are pointers to null-terminated strings containing, respectively, a shell
command line and an I/O mode, either r for reading or w for writing. Popen creates a pipe
between the calling program and the command to be executed. The value returned is a stream
pointer such that one can write to the standard input of the command, if the I/O mode is w, by
writing to the file stream; and one can read from the standard output of the command, if the I/O
mode is r, by reading from the file stream.

A stream opened by popen should be closed by pclose, which waits for the associated process to
terminate and returns the exit status of the command.

Because open files are shared, a type r command may be used as an input filter and a type w as
an output filter.

SEE ALSO

pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

DIAGNOSTICS

BUGS

Popen returns a NULL pointer if files or processes cannot be created, or if the shell cannot be
accessed.

Pclose returns -1 if stream is not associated with a *“popened” command.

If the original and “popened’” processes concurrently read or write a common file, neither should
use buffered I/O, because the buffering gets all mixed up. Problems with an output filter may be
forestalled by careful buffer flushing, e.g. with fflush; see felose(3S).

Hewlett—Packard -1- July 2, 1985

PRINTF (3S) PRINTF (38)

NAME
printf, fprintf, sprintf - print formatted output

SYNOPSIS
#include <stdio.h>

int printf (format [, arg] ...)
char *format;

int fprintf (stream, format [, arg] ...)
FILE *stream;
char *format;

int sprintf (s, format [, arg] ...)
char *s, format;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Printf places output on the standard output stream stdout. Fprintf places output on the named
output stream. Sprintf places "output”, followed by the null character (\0), in consecutive bytes
starting at *s; it is the user’s responsibility to ensure that enough storage is available. Each func—
tion returns the number of characters transmitted (not including the \0 in the case of sprintf), or
a negative value if an output error was encountered.

Each of these functions converts, formats, and prints its args under control of the format. The
format is a character string that contains two types of objects: plain characters, which are simply
copied to the output stream, and conversion specifications, each of which results in fetching of
zero or more args. The results are undefined if there are insufficient args for the format. If the
format is exhausted while args remain, the excess args are simply ignored.

Each conversion specification is introduced by the character %. After the %, the following
appear in sequence:

Zero or more flags, which modify the meaning of the conversion specification.

An optional decimal digit string specifying a minimum field width. If the converted value
has fewer characters than the field width, it will be padded on the left (or right, if the
left-adjustment flag ‘-’, described below, has been given) to the field width. If the field
width for an s conversion is preceded by a 0, the string is right adjusted with zero—
padding on the left.

A precision that gives the minimum number of digits to appear for the d, o, u, x, or X
conversions, the number of digits to appear after the decimal point for the e and f
conversions, the maximum number of significant digits for the g conversion, or the max-
imum number of characters to be printed from a string in s conversion. The precision
takes the form of a period (.) followed by a decimal digit string; a null digit string is
treated as zero.

An optional 1 (ell) specifying that a following d, o, u, x, or X conversion character applies
to a long integer arg, or an optional h specifying that a following d, o, u, x, or X conver—
sion character applies to a short integer arg. A 1 before any other conversion character is
ignored.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit string. In this
case, an integer arg supplies the field width or precision. The arg that is actually converted is not
fetched until the conversion letter is seen, so the args specifying field width or precision must
appear before the arg (if any) to be converted.

Hewlett-Packard -1- July 2, 1985

PRINTF (3S)

PRINTF (3S)

The flag characters and their meanings are: .

+
blank

#

The result of the conversion will be left—justified within the field.

The result of a signed conversion will always begin with a sign (4 or -).

If the first character of a signed conversion is not a sign, a blank will be prefixed to the
result. This implies that if the blank and + flags both appear, the blank flag will be
ignored.

This flag specifies that the value is to be converted to an “alternate form.” For ¢, d,
s, and u conversions, the flag has no effect. For o conversion, it increases the precision
to force the first digit of the result to be a zero. For x or X conversion, a non-zero
result will have Ox or 0X prefixed to it. For e, E, f, g, and G conversions, the result
will always contain a decimal point, even if no digits follow the point (normally, a
decimal point appears in the result of these conversions only if a digit follows it). For
g and G conversions, trailing zeroes will not be removed from the result (which they
normally are).

The conversion characters and their meanings are:

d,o,u,x,X The integer arg is converted to signed decimal, unsigned octal, decimal, or hexade-

e,E

g,G

%

cimal notation (x and X), respectively; the letters abcdef are used for x conversion
and the letters ABCDEF for X conversion. The precision specifies the minimum
number of digits to appear; if the value being converted can be represented in fewer
digits, it will be expanded with leading zeroes. (For compatibility with older versions,
padding with leading zeroes may alternatively be specified by prepending a zero to the
field width. This does not imply an octal value for the field width.) The default pre-
cision is 1. The result of converting a zero value with a precision of zero is a null
string.

The float or double arg is converted to decimal notation in the style “[-]ddd.ddd”,
where the number of digits after the decimal point .is equal to the precision
specification. If the precision is missing, six digits are output; if the precision is expli—
citly 0, no decimal point appears.

The float or double arg is converted in the style “[-]d.ddde+ddd”, where there is one
digit before the decimal point and the number of digits after it is equal to the preci—
sion; when the precision is missing, six digits are produced; if the precision is zero, no
decimal point appears. The E format code will produce a number with E instead of e
introducing the exponent. The exponent always contains exactly three digits.

The float or double arg is printed in style f or e (or in style E in the case of a G for-
mat code), with the precision specifying the number of significant digits. The style
used depends on the value converted: style e will be used only if the exponent result—
ing from the conversion is less than -4 or greater than the precision. Trailing zeroes
are removed from the result; a decimal point appears only if it is followed by a digit.
The character arg is printed. X

The arg is taken to be a string (character pointer) and characters from the string are
printed until a null character (\0) is encountered or the number of characters indi-
cated by the precision specification is reached. If the precision is missing, it is taken to
be infinite, so all characters up to the first null character are printed. A NULL value
for arg will yield undefined results.

Print a %; no argument is converted.

In no case does a non—existent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is simply expanded to contain the conversion
result. Characters generated by printf and fprintf are printed as if putc(3S) had been called.

EXAMPLES

To print a date and time in the form “Sunday, July 3, 10:02”, where weekday and month are
pointers to null-terminated strings:

Hewlett-Packard

-2~ July 2, 1985

PRINTF (3S) PRINTF (3S)

printf("%s, %s %d, %d:%.2d”, weekday, month, day, hour, min);
To print 7 to 5 decimal places:
printf("pi = %.5f", 4 * atan(1.0));

SEE ALSO
ecvt(3C), putc(3S), scanf(3S), stdio(3S), and vprintf(3S).

Hewlett-Packard -3- July 2, 1985

PRINTMSG (3C) PRINTMSG (3C)

NAME

printmsg, fprintmsg, sprintmsg - print formatted output with numbered arguments
SYNOPSIS

#include <stdio.h>

int printmsg (format [, arg] ...)

char *format;

int fprintmsg (stream, format [, arg] ...)
FILE #stream;
char xformat;

int sprintmsg (s, format [, arg | ...)
char *s, *format;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: HP
Native Language Support:
8-bit data, customs, messages

DESCRIPTION
Printmsg , fprintmsg , and sprintmsg are derived from their counterparts in printf(3S), with the
amplification that the conversion character % is replaced by the sequence %digit$. Digit is a
decimal digit » in the range 1-9, and indicates that this conversion should be applied to the nth
argument, rather than to the next unused one. All other aspects of formatting are unchanged.
All conversion specifications must contain the %digit$ sequence, and it is the user’s responsibility
to make sure the numbering is correct. All parameters must be used exactly once.

EXAMPLE
To create a language independent date and time printing routine we would write

printmsg(format, weekday, month, day, hour, min);
For American usage format would be a pointer to the string
"%18$s, %2%s %3%d, %4$d:%5%.2d"
and for German usage to a string
"%1%s, %38d %28s %4$d:%5%8.2d"

the resulting outputs will be “Sunday, July 3, 10:02”, and “Sonntag, 3 Juli 10:02” , assuming
that the proper strings have been passed in.

SEE ALSO
getmsg(3C), printf(3S), hpnls(7).

Hewlett—Packard -1- July 2, 1985

PUTC(3S) PUTC(3S)

NAME

pute, putchar, fpute, putw - put character or word on a stream

SYNOPSIS

#include <stdio.h>
int putc (c, stream)
int c;

FILE *stream;

int putchar (c)

int c;

int fputc (c, stream)
int c;

FILE *stream;

int putw (w, stream)
int w;

FILE *stream;

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

Putc writes the character ¢ onto the output stream (at the position where the file pointer, if
defined, is pointing). Putchar(c) is defined as putc(c, stdout). Putc and putchar are macros.

Fputc behaves like putc, but is a genuine function rather than a macro; it may therefore be used
as an argument. Fputc runs more slowly than putc, but it takes less space per invocation and its
name can be passed as an argument to a function.

Putw writes the word (i.e., int in C) w to the output stream (at the position at which the file
pointer, if defined, is pointing). The size of a word is the size of an integer and varies from
machine to machine. Putw neither assumes nor causes special alignment in the file.

Output streams, with the exception of the standard error stream stderr, are by default buffered if
the output refers to a file and line-buffered if the output refers to a terminal. The standard error
output stream stderr is by default unbuffered, but use of freopen (see fopen(3S)) will cause it to
become buffered or line-buffered. When an output stream is unbuffered, information is queued for
writing on the destination file or terminal as soon as written; when it is buffered, many characters
are saved up and written as a block. When it is line-buffered, each line of output is queued for
writing on the destination terminal as soon as the line is completed (that is, as soon as a new-line
character is written or terminal input is requested). Fflush can also be used to explicitly write the
buffer. Setbuf(3S) or setvbuf(3S) may be used to change the stream’s buffering strategy.

SEE ALSO

fclose(3S), ferror(3S), fopen(3S), fwrite(38), getc(3S), fread(3S), printf(3S), puts(3S), setbuf(3S).

DIAGNOSTICS

BUGS

On success, these functions each return the value they have written. On failure, they return the
constant EOF. This will occur if the file stream is not open for writing or if the output file cannot
be grown. Because EOF is a valid integer, ferror(3S) should be used to detect putw errors.

Line buffering may cause confusion or malfunctioning of programs which use standard I/O rou-
tines but use read(2) themselves to read from standard input. In cases where a large amount of
computation is done after printing part of a line on an output terminal, it is necessary to flush(3)
the standard output before going off and computing so that the output will appear.

Because it is implemented as a macro, putc treats incorrectly a stream argument with side effects.

Hewlett-Packard -1- July 2, 1985

PUTC(3S) PUTC(3S)

In particular, putc(c, *f4-+); doesn’t work sensibly. Fputc should be used instead.

Because of possible differences in word length and byte ordering, files written using putw are
machine-dependent, and may not be read using getw on a different (non-HP-UX) processor. For
this reason putw should be used with care.

Hewlett—Packard -2- July 2, 1985

PUTENV (3C) PUTENV (3C)

NAME
putenv - change or add value to environment

SYNOPSIS
int putenv (string)
char s#string;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
String points to a string of the form ‘“name=value.” Putenv makes the value of the environment
variable name equal to value by altering an existing variable or creating a new one. In either
case, the string pointed to by string becomes part of the environment, so altering the string will
change the environment. The space used by string is no longer used once a new string-defining
name is passed to putenv.

DIAGNOSTICS
Putenv returns non-zero if it was unable to obtain enough space via malloc for an expanded
environment, otherwise zero.

SEE ALSO
exec(2), getenv(3C), malloc(3C), environ(5).

WARNINGS
Putenv manipulates the environment pointed to by environ, and can be used in conjunction with
getenv. However, envp (the third argument to main) is not changed.
This routine uses malloc(3C) to enlarge the environment.
After putenv is called, environmental variables are not in alphabetical order.
A potential error is to call putenv with an automatic variable as the argument, then exit the cal-
ling function while string is still part of the environment.

Hewlett-Packard -1- July 2, 1985

PUTPWENT (3C) PUTPWENT (3C)

NAME
putpwent - write password file entry

SYNOPSIS
#include <pwd.h>
#include <stdio.h>
int putpwent (p, f)
struct passwd #p;
FILE xf;

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS

Origin: System V

DESCRIPTION
Putpwent is the inverse of getpwent(3C). Given a pointer to a passwd structure as created by
getpwent (or getpwuid or getpwnam), putpwent writes a line on the stream f, which matches the
format of /etc/passwd.

DIAGNOSTICS
Putpwent returns non—zero if an error was detected during its operation, otherwise zero.

SEE ALSO
getpwent (3C).

WARNING
The above routine uses <stdio.h>, which causes it to increase the size of programs, not otherwise
using standard I/O, more than might be expected.

Hewlett—Packard -1- July 2, 1985

PUTS (3S) PUTS (3S)

NAME
puts, fputs - put a string on a stream

SYNOPSIS
#include <stdio.h>
int puts (s)
char #s;
int fputs (s, stream)

char #s;
FILE xstream;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
Puts writes the null-terminated string pointed to by s, followed by a new-line character, to the
standard output stream stdout.

Fputs writes the null-terminated string pointed to by s to the named output stream.

Neither function writes the terminating null character. Note that puts appends a new-line char—
acter, but fputs does not.

DIAGNOSTICS
Both routines return EOF on error. This will happen if the routines try to write on a file that has
not been opened for writing.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), printf(3S), putc(3S).

NOTES
Puts appends a new-line character while fputs does not.

Hewlett—Packard -1- July 2, 1985

QSORT (3C) QSORT (3C)

NAME

gsort - quicker sort

SYNOPSIS

void gsort ((char #) base, nel, sizeof (*base), compar)
unsigned nel;
int (*compar)();

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

NOTES

Qsort is an implementation of the quicker-sort algorithm. It sorts vectors of arbitrarily-sized ele-
ments based on user-supplied size information and a comparison routine, in place

Base points to the element at the base of the table. Nel is the number of elements in the table.
Compar is the name of the comparison function, which is called with two arguments that point to
the elements being compared. The function passed as compar must return an integer less than,
equal to, or greater than zero as a consequence of whether its first argument is to be considered
less than, equal to, or greater than the second. This is the same return convention that strcmp
uses.

The pointer to the base of the table should be of type pointer-to-element, and cast to type
pointer-to—character.

The comparison function need not compare every byte, so arbitrary data may be contained in the
elements in addition to the values being compared.

The order in the output of two items which compare as equal is unpredictable.

SEE ALSO

BUGS

sort(1), bsearch(3C), Isearch(3C), string(3C).

If width is zero, a divide-by-zero error is generated.

Hewlett—Packard -1- July 2, 1985

RAND(3C)

NAME
rand, srand - simple random-number generator

SYNOPSIS
int rand ()

void srand (seed)
unsigned seed;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION

RAND(3C)

Rand uses a multiplicative congruential random-number generator with period 2%2 that returns

successive pseudo-random numbers in the range from 0 to 27°-1.

Srand can be called at any time to reset the random-number generator to a random starting

point. The generator is initially seeded with a value of 1.

NOTE

The spectral properties of rand leave a great deal to be desired. Drand{8(3C) provides a much

better, though more elaborate, random-number generator.

SEE ALSO
drand48(3C).

Hewlett—Packard -1-

July 2, 1985

REGCMP (3X) REGCMP (3X)

NAME
regemp, regex - compile and execute regular expression

SYNOPSBIS
char *regcmp (stringl [, string2, ...], (char)0)
char #stringl, #string2, ...;

char #regex (re, subject[, ret0, ...])
char xre, *subject, *ret0, ...;

extern char *__locl;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Regemp compiles a regular expression and returns a pointer to the compiled form. Malloc(3C) is
used to create space for the vector. It is the user’s responsibility to free unneeded space so allo—
cated. A NULL return from regemp indicates an incorrect argument. Regemp(1) has been written
to generally preclude the need for this routine at execution time.

Reger executes a compiled pattern against the subject string. Additional arguments are passed to
receive values back. Regez returns NULL on failure or a pointer to the next unmatched character
on success. A global character pointer __loc! points to where the match began. Regemp and
regezr were mostly borrowed from the editor, ed(1); however, the syntax and semantics have been
changed slightly. The following are the valid symbols and their associated meanings.

[1*.” These symbols retain their current meaning.
$ Matches the end of the string; \n matches a new-line.

- Within brackets the minus means through. For example, [a-z] is equivalent to
[abed...xyz]. The - can appear as itself only if used as the first or last character.
For example, the character class expression []-] matches the characters | and -.

+ A regular expression followed by + means one or more times. For example, [0-9]+ is
equivalent to [0-9][0-9]+.
{m} {m,} {m,u}

Integer values enclosed in {} indicate the number of times the preceding regular
expression is to be applied. The value m is the minimum number and u is a number,
less than 256, which is the maximum. If only m is present (e.g., {m}), it indicates the
exact number of times the regular expression is to be applied. The value {m,} is analo—
gous to {m,infinity}. The plus (4) and star (*) operations are equivalent to {1,} and
{0,} respectively.

(...)$n The value of the enclosed regular expression is to be returned. The value will be stored
in the (n+1)th argument following the subject argument. At most ten enclosed regular
expressions are allowed. Regez makes its assignments unconditionally.

(...) Parentheses are used for grouping. An operator, e.g., *, +, {}, can work on a single
character or a regular expression enclosed in parentheses. For example, (ax(cb+)*)$0.

By necessity, all the above defined symbols are special. They must, therefore, be escaped to be
used as themselves.

EXAMPLES
Example 1:
char *cursor, *newcursor, *ptr;

newcursor = regex((ptr = regemp(”"\n", 0)), cursor);

Hewlett—Packard -1- July 2, 1985

REGCMP (3X) REGCMP (3X)

free(ptr);
This example will match a leading new-line in the subject string pointed at by cursor.

Example 2:
char ret0[9];
char #newcursor, *name;

name = regemp(”([A-Za-z][A-za-20-9_]{0,7})$0", 0);
newcursor = regex(name, “123Testing321", ret0);

This example will match through the string “Testing3” and will return the address of the charac—
ter after the last matched character (cursor+11). The string “Testing3” will be copied to the
character array ret0.

Example 3:
#include "file.i”
char #string, *newcursor;

newcursor = regex(name, string);
This example applies a precompiled regular expression in file.i (see regemp(1)) against string.
This routine is kept in /lib/libPW.a.

SEE ALSO

BUGS

ed(1), regemp(1), malloc(3C).

The user program may run out of memory if regemp is called iteratively without freeing the vec—
tors no longer required. The following user-supplied replacement for malloc(3C) reuses the same
vector saving time and space:

/* user’s program */

char *
malloc(n)
unsigned n;
{
static char rebuf[512];
return (n <= sizeof rebuf) ? rebuf : NULL;

Hewlett—Packard -2- July 2, 1985

SCANF (3S) SCANF (38)

NAME
scanf, fscanf, sscanf - formatted input conversion, read from stream file

SYNOPSIS
#include <stdio.h>

int scanf (format [, pointer | ...)
char *format;

int fscanf (stream, format [, pointer] ...)
FILE xstream;
char *format;

int sscanf (s, format [, pointer | ...)
char *s, *format;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Scanf reads from the standard input stream stdin. Fscanf reads from the named input stream.
Sscanf reads from the character string s. Each function reads characters, interprets them accord—
ing to a format, and stores the results in its arguments. Each expects, as arguments, a control
string format described below, and a set of pointer arguments indicating where the converted
input should be stored.

The control string usually contains conversion specifications, which are used to direct interpreta—
tion of input sequences. The control string may contain:

1. White-space characters (blanks, tabs, new-lines, or form—feeds) which, except in two cases
described below, cause input to be read up to the next non-white-space character.

2. An ordinary character (not %), which must match the next character of the input stream.

3. Conversion specifications, consisting of the character %, an optional assignment suppressing
character *, an optional numerical maximum field width, an optional 1 (ell) or h indicating the
size of the receiving variable, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the
variable pointed to by the corresponding argument, unless assignment suppression was indicated
by #. The suppression of assignment provides a way of describing an input field which is to be
skipped. An input field is defined as a string of non—space characters; it extends to the next inap-
propriate character or until the field width, if specified, is exhausted. For all descriptors except
“[” and “c”, white space leading an input field is ignored.

The conversion code indicates the interpretation of the input field; the corresponding pointer
argument must usually be of a restricted type. For a suppressed field, no pointer argument is
given. The following conversion codes are legal:

% a single % is expected in the input at this point; no assignment is done.

d a decimal integer is expected; the corresponding argument should be an integer pointer.

u an unsigned decimal integer is expected; the corresponding argument should be an
unsigned integer pointer.

o an octal integer is expected; the corresponding argument should be an integer pointer.

x a hexadecimal integer is expected; the corresponding argument should be an integer
pointer.

ef,g a floating point number is expected; the next field is converted accordingly and stored
through the corresponding argument, which should be a pointer to a float. The input
format for floating point numbers is an optionally signed string of digits, possibly contain—
ing a decimal point, followed by an optional exponent field consisting of an E or an e, fol-
lowed by an optional +, -, or space, followed by an integer.

Hewlett—Packard -1- July 2, 1985

SCANF (38)

SCANF (3S)

a character string is expected; the corresponding argument should be a character pointer
pointing to an array of characters large enough to accept the string and a terminating \0,
which will be added automatically. The input field is terminated by a white-space char—
acter. Note that scanf will not read a null string.

a character is expected; the corresponding argument should be a character pointer. The
normal skip over white space is suppressed in this case; to read the next non-space char—
acter, use %1s. If a field width is given, the corresponding argument should refer to a
character array; the indicated number of characters is read.

indicates string data and the normal skip over leading white space is suppressed. The left
bracket is followed by a set of characters, which we will call the scanset, and a right
bracket; the input field is the maximal sequence of input characters consisting entirely of
characters in the scanset. The circumflex (*), when it appears as the first character in
the scanset, serves as a complement operator and redefines the scanset as the set of all
characters not contained in the remainder of the scanset string. There are some conven—
tions used in the construction of the scanset. A range of characters may be represented
by the construct first-last, thus [0123456789] may be expressed [0-9]. Using this conven—
tion, first must be lexically less than or equal to last, or else the dash will stand for itself.
The dash will also stand for itself whenever it is the first or the last character in the scan—
set. To include the right square bracket as an element of the scanset, it must appear as
the first character (possibly preceded by a circumflex) of the scanset, and in this case it
will not be syntactically interpreted as the closing bracket. The corresponding argument
must point to a character array large enough to hold the data field and the terminating
\0, which will be added automatically. At least one character must match for this
conversion to be considered successful.

The conversion characters d, u, o, and x may be preceded by 1 or h to indicate that a pointer to
long or to short rather than to int is in the argument list. Similarly, the conversion characters
e, f, and g may be preceded by 1 to indicate that a pointer to double rather than to float is in
the argument list. The 1 or h modifier is ignored for other conversion characters.

Scanf conversion terminates at EOF, at the end of the control string, or when an input character
conflicts with the control string. In the latter case, the offending character is left unread in the
input stream.

Scanf returns the number of successfully matched and assigned input items; this number can be
zero in the event of an early conflict between an input character and the control string. If the
input ends before the first conflict or conversion, EOF is returned.

EXAMPLES

The call:

int i, n; float x; char name[50];
n = scanf ("%d%f%s”, &i, &x, name);

with the input line:

25 54.32E—1 thompson

will assign to n the value 3, to ¢ the value 25, to z the value 5.432, and name will contain
thompson\0. Or:

int i; float x; char name[50];
(void) scanf ("%2d%{%+*d %[0-9]", &i, &x, name);

with input:

56789 0123 56a72

will assign 56 to ¢, 789.0 to.z, skip 0123, and place the string 56\0 in name. The next call to
getchar (see gete(3S)) will return a.

Hewlett-Packard -2- July 2, 1985

SCANF (35) SCANF (38)

SEE ALSO
getc(3S), printf(38), strtod(3C), strtol(3C).

NOTE

Trailing white space (including a new-line) is left unread unless matched in the control string.
DIAGNOSTICS

These functions return EOF on end of input and a short count for missing or illegal data items.

BUGS
The success of literal matches and suppressed assignments is not directly determinable.

Hewlett-Packard -3 - July 2, 1985

SETBUF (38) SETBUF (3S)

NAME
setbuf, setvbuf - assign buffering to a stream file
SYNOPSIS
#include <stdio.h>
void setbuf (stream, buf)
FILE *stream;
char *buf;
int setvbuf (stream, buf, type, size)
FILE #stream;
char *buf;
int type, size;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V
DESCRIPTION
Setbuf may be used after a stream has been opened but before it is read or written. It causes the
array pointed to by buf to be used instead of an automatically allocated buffer. If buf is the NULL
pointer input/output will be completely unbuffered.
A constant BUFSIZ, defined in the <stdio.h> header file, tells how big an array is needed:
char buf[BUFSIZ);

Setvbuf may be used after a stream has been opened but before it is read or written. Type deter—
mines how stream will be buffered. Legal values for type (defined in stdio.h) are:

_IOFBF causes input/output to be fully buffered.

_IOLBF causes output to be line buffered; the buffer will be flushed when a newline is writ—
ten, the buffer is full, or input is requested.

_IONBF causes input/output to be completely unbuffered.

If buf is not the NULL pointer, the array it points to will be used for buffering instead of an
automatically allocated buffer (from malloc(3C) or memallc(2)). Size specifies the size of the
buffer to be used. The constant BUFSIZ in <stdio.h> is suggested as a good buffer size. If
input/output is unbuffered, buf and size are ignored.

By default, output to a terminal is line buffered and all other input/output is fully buffered.
HARDWARE DEPENDENCIES

Series 500:
The system call memallc(2) is used instead of malloc.

SEE ALSO
fopen(38), getc(3S), malloc(3C), putc(3S), stdio(3S).

DIAGNOSTICS
If an illegal value for type or size is provided, setvbuf returns a non-zero value. Otherwise, the
value returned will be zero.

NOTE
A common source of error is allocating buffer space as an “automatic” variable in a code block,
and then failing to close the stream in the same block.

Hewlett-Packard -1- July 2, 1985

SETIMP (3C) SETIMP (3C)

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include <setjmp.h>

int setjmp (env)
jmp_buf env;

void longjmp (env, val)
jmp_buf env;
int val;

int _setjmp(env)
jmp__buf env;

void _longjmp(env, val)
Jjmp_buf env;
int val;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
These functions are useful for dealing with errors and interrupts encountered in a low-level sub-
routine of a program.

Setymp saves its stack environment in env (whose type, jmp_buf, is defined in the <setjmp.h>
header file) for later use by longjmp. It returns the value 0.

Longjmp restores the environment saved by the last call of setymp with the corresponding env
argument. After longymp is completed, program execution continues as if the corresponding call
of setymp (which must not itself have returned in the interim) had just returned the value wval.
Longjmp cannot cause setymp to return the value 0. If longjmp is invoked with a second argu-
ment of 0, setymp will return 1. All accessible data have values as of the time longjmp was called.

Upon the return from a setymp call caused by a longjmp, the values of any non-static local vari-
ables are undefined. Depending on such values renders code using non-static local variables non-
portable.

Setymp and longymp save and restore the signal mask (see sigvector(2)), while _setymp and
__longjmp manipulate only the stack and registers. This distinction is only significant for pro-
grams which use sigvector(2), sigblock(2), and/or sigsetmask(2).

If a longymp is executed and the environment in which the setjmp was executed no longer exists,
errors can occur. The conditions under which the environment of the seiyjmp no longer exists
include: exiting the procedure which contains the setjmp call, and exiting an inner block with tem-
porary storage (e.g. a block with declarations in C, a with statement in Pascal). This condition
may or may not be detectable. An attempt is made by determining if the stack frame pointer in
env points to a location not in the currently active stack. If this is the case, longymp will return a
-1. Otherwise, the longgmp will occur, and if the environment no longer exists, the contents of the
temporary storage of an inner block are unpredictable. This condition may also cause unexpected
process termination. If the procedure has been exited the results are unpredictable.

Passing longymp a pointer to a buffer not created by setjmp, or a buffer that has been modified by
the user, can cause all the problems listed above, and more.

Some implementations of Pascal support a t¢ry/recover mechanism, which also creates stack
marker information. If a longjmp operation occurs in a scope which is nested inside a try/recover,
and the corresponding setjmp is not inside the scope of the try/recover, the recover block will not
be executed and the currently active recover block will become the one enclosing the setymp (if

Hewlett-Packard -1- November 15, 1985

SETIMP (3C) SETIMP (3C)

there is one).

NOTE
A call to longymp to leave the guaranteed stack space reserved by sigspace (2) may remove the
guarantee that the ordinary execution of the program will not extend into the guaranteed space.
It may also cause the program to forever loose its ability to automatically increase the stack size,
and the program may then be limited to the guaranteed space.

SEE ALSO
sigvector(2), sigblock(2), sigsetmask(2), sigspace(2), signal(2).

WARNING
If longgmp is called even though env was never primed by a call to setymp, or when the last such
call was in a function which has since returned, absolute chaos is guaranteed.

Hewlett-Packard -2- November 15, 1985

SINH (3M) SINH (3M)

NAME
sinh, cosh, tanh - hyperbolic functions

SYNOPSIS
#include <math.h>
double sinh (x) float fsinh (x)
double x; {float x;
double cosh (x) float fcosh (x)
double x; {float x;
double tanh (x) float ftanh (x)
double x; {float x;

i see important note below

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
Sinh, cosh, and tanh return, respectively, the hyperbolic sine, cosine and tangent of their argu—
ment. These are double-precision routines.

IMPORTANT NOTE: The corresponding single-precision routines fsinh, fcosh, and ftanh expect
true single-precision arguments, and therefore cannot be called from standard C. They are pro—
vided for support of FORTRAN (Pascal does not support or use hyperbolic functions).

DIAGNOSTICS
Sinh and cosh set errno to ERANGE and return HUGE (sinh may return -HUGE for negative
z) when the correct value would overflow.

Error handling is identical for both single- and double-precision routines, except for one con—
sideration: In any situation where the double-precision routine would return +HUGE, the
corresponding single-precision routine returns =MAXFLOAT.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
matherr(3M).

Hewlett-Packard -1- July 11, 1985

SLEEP (3C) SLEEP (3C)

sleep - suspend execution for interval

SYNOPSIS

unsigned long sleep (seconds)
unsigned long seconds;

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

The current process is suspended from execution for the number of seconds specified by the argu—
ment. The actual suspension time may be less than that requested because any caught signal will
terminate the sleep following execution of that signal’s catching routine. Also, the suspension
time may be longer than requested by an arbitrary amount due to the scheduling of other activity
in the system. The value returned by sleep will be the “unslept” amount (the requested time
minus the time actually slept) in case the caller had an alarm set to go off earlier than the end of
the requested sleep time, or premature arousal due to another caught signal.

The routine is implemented by setting an alarm signal and pausing until it (or some other signal)
occurs. The previous state of the alarm signal is saved and restored. The calling program may
have set up an alarm signal before calling sleep. If the sleep time exceeds the time till such alarm
signal, the process sleeps only until the alarm signal would have occurred. The caller’s alarm
catch routine is executed just before the sleep routine returns. If the sleep time is less than the
time till such alarm, the prior alarm time is reset to go off at the same time it would have without
the intervening sleep.

Seconds must be less than 252,

SEE ALSO

alarm(2), pause(2), signal(2).

Hewlett—Packard -1- July 2, 1985

SPUTL(3X) SPUTL (3X)

NAME

sputl, sgetl - access long integer data in a machine-independent fashion.
SYNOPSIS

void sputl (value, buffer)

long value;

char *buffer;

long sgetl (buffer)
char *buffer;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Sputl takes the four bytes of the long integer value and places them in memory starting at the
address pointed to by buffer. The ordering of the bytes is the same across all machines.

Sgetl retrieves the four bytes in memory starting at the address pointed to by buffer and returns
the long integer value in the byte ordering of the host machine.

The combination of sputl and sget! provides a machine-independent way of storing long numeric
data in a file in binary form without conversion to characters.

A program which uses these functions must be loaded with the object—file access routine library
libld.a.

Hewlett—Packard -1- July 2, 1985

SSIGNAL (3C) SSIGNAL (3C)

NAME
ssignal, gsignal - software signals

SYNOPSIS
#include <signal.h>

int (+ssignal (sig, action))()
int sig, (*action)();
int gsignal (sig)
int sig;
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V
DESCRIPTION
Ssignal and gsignal implement a software facility similar to signal(2). This facility is used by the

Btandard C Library to enable users to indicate the disposition of error conditions, and is also
made available to users for their own purposes.

Software signals made available to users are associated with integers in the inclusive range 1
through 15. A call to ssignal associates a procedure, action, with the software signal sig; the
software signal, sig, is raised by a call to gsignal. Raising a software signal causes the action
established for that signal to be taken.

The first argument to ssignal is a number identifying the type of signal for which an action is to
be established. The second argument defines the action; it is either the name of a (user-defined)
action function or one of the manifest constants SIG_DFL (default) or SIG_IGN (ignore). Ssig-
nal returns the action previously established for that signal type; if no action has been established
or the signal number is illegal, ssignal returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is reset to SIG_DFL and
the action function is entered with argument sig. Gsignal returns the value returned to it
by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes no other action.
If the action for sig is SIG_DFL, gsignal returns the value 0 and takes no other action.

If sig has an illegal value or no action was ever specified for sig, gsignal returns the value 0
and takes no other action.
SEE ALSO
signal(2).
NOTES
There are some additional signals with numbers outside the range 1 through 15 which are used by
the Standard C Library to indicate error conditions. Thus, some signal numbers outside the range
1 through 15 are legal, although their use may interfere with the operation of the Standard C
Library.

Hewlett—-Packard -1- July 2, 1985

STDIO (38) STDIO (3S)

NAME
stdio - standard buffered input/output stream file package

SYNOPSIS
#include <stdio.h>

FILE *stdin, *stdout, *stderr;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
The functions described in the entries of sub-class 3S of this manual constitute an efficient, user—
level 1/0 buffering scheme. The in-line macros getc(38) and pute(3S) handle characters quickly.
The macros getchar and putchar, and the higher-level routines fgetc, fgets, fprintf, fputc, fputs,
fread, fscanf, fwrite, gets, getw, printf, puts, putw, and scanf all use or act as if they use getc and
putc; they can be freely intermixed.

A file with associated buffering is called a stream and is declared to be a pointer to a defined type
FILE. Fopen(38) creates certain descriptive data for a stream and returns a pointer to designate
the stream in all further transactions. Normally, there are three open streams with constant
pointers declared in the <stdio.h> header file and associated with the standard open files:

stdin standard input file

stdout standard output file
stderr standard error file

A constant NULL (0) designates a nonexistent pointer.

An integer—-constant EOF (-1) is returned upon end-of-file or error by most integer functions that
deal with streams (see the individual descriptions for details).

An integer constant BUFSIZ specifies the size of the buffers used by the particular implementa—
tion.

Any program that uses this package must include the header file of pertinent macro definitions, as
follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class 3S of this manual are declared
in that header file and need no further declaration. The constants and the following “functions”
are implemented as macros (redeclaration of these names is perilous): getc, getchar, putc,
putchar, ferror, feof, clearerr, and fileno.

A constant _NFILE defines the maximum number of open files allowed per process.

SEE ALSO
open(2), close(2), Iseek(2), pipe(2), read(2), write(2), ctermid(3S), cuserid(3S), fclose(38),
ferror(3S), fopen(3S), fread(3S), fseek(3S), getc(3S), gets(3S), popen(3S), printf(3S), putc(3S),
puts(3S), scanf(38), setbuf(3S), system(3S), tmpfile(3S), tmpnam(3S), ungetc(3S).

DIAGNOSTICS
Invalid stream pointers will usually cause grave disorder, possibly including program termination.
Individual function descriptions describe the possible error conditions.

Hewlett-Packard -1- July 2, 1985

STDIPC(3C) STDIPC(3C)

NAME
ftok - standard interprocess communication package

SYNOPSIS
#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok(path, id)
char *path;
char id;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION

All interprocess communication facilities require the user to supply a key to be used by the
msgget(2), semget(2), and shmget(2) system calls to obtain interprocess communication
identifiers. One suggested method for forming a key is to use the ftok subroutine described below.
Another way to compose keys is to include the project ID in the most significant byte and to use
the remaining portion as a sequence number. There are many other ways to form keys, but it is
necessary for each system to define standards for forming them. If some standard is not adhered
to, it will be possible for unrelated processes to unintentionally interfere with each other’s opera-
tion. Therefore, it is strongly suggested that the most significant byte of a key in some sense refer
to a project so that keys do not conflict across a given system.

Ftok returns a key based on path and id that is usable in subsequent msgget, semget, and shmget
system calls. Path must be the path name of an existing file that is accessible to the process. Id
is a character which uniquely identifies a project. Note that ftok will return the same key for
linked files when called with the same id and that it will return different keys when called with
the same file name but different ¢ds.

SEE ALSO
intro(2), msgget(2), semget(2), shmget(2).
DIAGNOSTICS
Ftok returns (key_t) -1 if path does not exist or if it is not accessible to the process.

WARNING
If the file whose path is passed to ftok is removed when keys still refer to the file, future calls to
ftok with the same path and id will return an error. If the same file is recreated, then ftok is likely
to return a different key than it did the original time it was called.

Hewlett-Packard -1- July 2, 1985

STRING (3C) STRING (3C)

NAME
streat, strncat, stremp, strnemp, strepy, strnepy, strlen, strchr, strrchr, strpbrk, strspn, strespn,
strtok - character string operations

SYNOPSIS
#include <string.h>

char sstrcat (sl, s2)
char *sl, *s2;

char #strncat (sl1, s2, n)
char *s1, *s2;
int n;

int strcmp (sl, s2)
char *sl, *s2;

int strncmp (s1, s2, n)
char xs1, *s2;

int n;

char sstrcpy (sl, s2)
char *s1, *s2;

char sstrncpy (sl, s2, n)
char *sl, *s2;

int n;

int strlen (s)

char #*s;

char #strchr (s, c)
char *s;
int c;
char #strrchr (s, c)
char *s;
int c;
char sstrpbrk (sl, s2)
char *sl, *s2;
int strspn (sl, s2)
char *sl, *s2;
int strcspn (sl, s2)
char xs1, *s2;
char sstrtok (sl, s2)
char *s1, *s2;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
These functions operate on null-terminated strings. The arguments s1, s2 and s point to strings
(arrays of characters terminated by a null character). The functions strecat, strncat, strepy, and
strncpy all alter s1. These functions do not check for overflow of the array pointed to by s1.
Strecat appends a copy of string s2 to the end of string s1. Strncat appends at most n characters.

It copies less if s2 is shorter than n characters. Each returns a pointer to the null-terminated
result (the original value of s1).

Hewlett—Packard -1- July 2, 1985

STRING (3C) STRING (3C)

Stremp compares its arguments and returns an integer less than, equal to, or greater than 0,
according as sl is lexicographically less than, equal to, or greater than s2. (NULL values for sf
and s2 are treated the same as pointers to null strings.) Strnemp makes the same comparison but
looks at at most n characters (n less than or equal to zero yields equality). Both of these routines
use unsigned char for character comparison.

Strepy copies string s2 to sl, stopping after the null character has been copied. Strncpy copies
exactly n characters, truncating s2 or adding null characters to sl if necessary. The result will
not be null-terminated if the length of s2 is n or more. If the lengthe of s2 is less than n, char—
acters from the first null in 82 to the nth character are copied as nulls. Each function returns s1.

Note that strncpy should not be used to copy n bytes of an arbitrary structure. If that structure
contains a null byte anywhere, strncpy will terminate the copy when it encounters the null byte,
thus copying fewer than n bytes.

Strlen returns the number of characters in s, not including the terminating null character.

Strchr (strrchr) returns a pointer to the first (last) occurrence of character ¢ (an 8-bit ASCII
value) in string s, or a NULL pointer if ¢ does not occur in the string. The null character ter—
minating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string s1 of any character from string s2, or a
NULL pointer if no character from s2 exists in s1.

Strspn (strespn) returns the length of the initial segment of string s1 which consists entirely of
characters from (not from) string s2.

Strtok considers the string s1 to consist of a sequence of zero or more text tokens separated by
spans of one or more characters from the separator string s2. The first call (with pointer sl
specified) returns a pointer to the first character of the first token, and will have written a null
character into s1 immediately following the returned token. The function keeps track of its posi—
tion in the string between separate calls, so that subsequent calls (which must be made with the
first argument a NULL pointer) will work through the string s1 immediately following that token.
In this way subsequent calls will work through the string s1 until no tokens remain. The separa—
tor string s2 may be different from call to call. When no token remains in s1, a NULL pointer is
returned.

HARDWARE DEPENDENCIES

NOTE

BUGS

Series 200:
N is limited by the process size.

Series 500:
N is limited to about 500 Mbytes.

For user convenience, all these functions are declared in the optional <string.h> header file.

The copy operations cannot check for overflow of any receiving string. NULL destinations cause
errors; NULL sources are treated as zero-length strings.

Character movement is performed differently in different implementations. Thus overlapping
moves may yield surprises.

Hewlett—Packard -2- July 2, 1985

STRTOD (3C) STRTOD (3C)

NAME

strtod, atof, nl_strtod, nl__atof - convert string to double-precision number

SYNOPSIS

HP-UX

double strtod (str, ptr)
char #str, *xptr;

double atof (str)

char #*str;

double nl_strtod (str, ptr, langid)
char *str, *#ptr;

int langid;

double nl_atof (str, langid)
char *str;

int langid;

COMPATIBILITY

Level: HP-UX/RUN ONLY

Origin: System V

Native Language Support:
8-bit data, customs, messages

DESCRIPTION

Strtod returns as a double-precision floating—point number the value represented by the character
string pointed to by str. The string is scanned up to the first unrecognized character.

Strtod recognizes an optional string of “white-space” characters (as defined by isspace in
ctype(3C)), then an optional sign, then a string of digits optionally containing a decimal point
then an optional e or E followed by an optional sign or space, followed by an integer.

If the value of ptr is not (char **)NULL, a pointer to the character terminating the scan is
returned in the location pointed to by ptr. If no number can be formed, *ptr is set to str, and
zero is returned.

Atof(str) is equivalent to strtod(str, (char *x)NULL).

NL_strtod and nl_atof are similar to the above routines, but use langid to determine what the
radix character should be (e.g. . or *,"). If langid is not valid, or information for langid has not
been installed, the radix character defaults to a period.

SEE ALSO

ctype(3C), scanf(3S), strtol(3C), hpnls(7), langid(7).

DIAGNOSTICS

If the correct value would cause overflow, £HUGE is returned (according to the sign of the value),
and errno is set to ERANGE.
If the correct value would cause underflow, zero is returned and errno is set to ERANGE.

Hewlett—Packard -1- July 2, 1985

STRTOL (3C) STRTOL (3C)

NAME
strtol, atol, atoi - convert string to integer

SYNOPSIS
long strtol (str, ptr, base)
char *str, #*ptr;
int base;
long atol (str)
char *str;
int atoi (str)
char #str;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
Strtol returns as a long integer the value represented by the character string pointed to by str.
The string is scanned up to the first character inconsistent with the base. Leading ‘‘white-space”
characters (as defined by isspace in ctype(3C)) are ignored.

If the value of ptr is not (char #x)NULL, a pointer to the character terminating the scan is
returned in the location pointed to by ptr. If no integer can be formed, that location is set to str,
and zero is returned.

If base is positive (and not greater than 36), it is used as the base for conversion. After an
optional leading sign, leading zeros are ignored, and “0x” or “0X” is ignored if base is 16.

If base is zero, the string itself determines the base thusly: After an optional leading sign a leading
zero indicates octal conversion, and a leading “0x” or “0X” hexadecimal conversion. Otherwise,
decimal conversion is used.

Atol(str) is equivalent to strtol(str, (char x)NULL, 10).
Atoi(str) is equivalent to (int) strtol(str, (char +x)NULL, 10).

SEE ALSO
atof(3C), ctype(3C), scanf(3S), strtod(3C).

HARDWARE DEPENDENCIES
Series 200/500:
Atoi and atol are identical.

BUGS
Overflow conditions are ignored.

Hewlett—Packard -1- July 2, 1985

SWAB(3C) SWAB(3C)

NAME
swab - swap bytes

SYNOPSIS
void swab (from, to, nbytes)
char xfrom, *to;
int nbytes;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
Swab copies nbytes bytes pointed to by from to the array pointed to by to, exchanging adjacent
even and odd bytes. It is useful for carrying binary data between byte-swapped and non-byte-
swapped machines. Nbytes should be even and non-negative. If nbytes is odd and positive swab
uses nbytes-1 instead. If nbytes is negative, swab does nothing.

Hewlett—-Packard -1- July 2, 1985

SYSTEM(3S) SYSTEM(3S)

NAME
system - issue a shell command

SYNOPSIS
#include <stdio.h>
int system (string)
char #string;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
System causes the string to be given to sh(1) as input, as if the string had been typed as a com—
mand at a terminal. The current process waits until the shell has completed, then returns the
exit status of the shell.

FILES
/bin/sh
SEE ALSO
sh(1), exec(2).

DIAGNOSTICS
System forks to create a child process that in turn exec’s /bin/sh in order to execute string. If
the fork or exec fails, system returns a negative value and sets errno.

Hewlett-Packard -1- July 2, 1985

TERMCAP (3X) TERMCAP (3X)

NAME
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs - emulate /etc/termcap access routines

SYNOPSIS
tgetent(bp, name)
char *bp, *name;

tgetnum (id)
char *id;

tgetflag(id)

char *id;

char *
tgetstr(id, area)
char *id, **area;

char *
tgoto(cm, destcol, destline)
char *cm;

tputs(cp, affent, outc)
register char *cp;

int affent;

int (*outc)();

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION
Termcap(8) functions extract and use capabilities from the compiled terminal capability data
bases (see terminfo(5)). They are emulation routines that are provided as a part of the curses(8X)
library.

Tgetent extracts the compiled entry for terminal name into buffers accessible by the programmer.
Unlike previous termcap routines, all capability strings (except cursor addressing and padding
information) are already compiled and stored internally upon return from tgetent. The buffer
pointer bp is redundant in the emulation, and is ignored. It should not be relied upon to point to
meaningful information. Tgetent returns -1 if it cannot access the terminfo directory, 0 if there is
no capability file for name, and 1 if all goes well. If a TERMINFO environment variable is set,
tgetent first looks for TERMINFO/?/name (where 7 is the first character of name), and if that file
is not accessible, it looks for fusr/lib/terminfo/?/name.

Tgetnum gets the numeric value of capability #d, returning -1 if it is not given for the terminal.
Tgetnum is useful only with capabilities having numeric values.

Tgetflag returns 1 if the specified capability is present in the terminal’s entry, and 0 if it is not.
Tgetflag is useful only with capabilities that are boolean in nature (i.e. either present or missing in
terminfo(5)).

Tgetstr returns a pointer to the string value of capability 7d. In addition, if area is not a NULL
pointer, tgetstr will place the capability in the buffer at area and advance the area pointer. The
returned string capability is compiled except for cursor addressing and padding information.
Tgetstr is useful only with capabilities having string values. Tgetstr returns a NULL pointer if the
capability is not available on the terminal or id is not a string capability.

Tgoto returns a cursor addressing string decoded from ¢m to go to column destcol in line destline.
(Programs which call ¢goto should be sure to turn off the TAB3 bit(s), since tgoto may now out—
put a tab. See termio(4). Note that programs using termcap should in general turn off TAB3
anyway since some terminals use control-I for other functions, such as nondestructive space.) If a

Hewlett—Packard -1- July 2, 1985

TERMCAP (3X) TERMCAP (3X)

% sequence is given which is not understood, then tgoto returns OOPS.

Tputs decodes the padding information of the string cp. Affent gives the number of lines affected
by the operation, or 1 if this is not applicable. Outc is a routine which is called with each charac—
ter in turn. The terminfo variable pad_char should contain a pad character to be used (from
the pc capability) if a null (@) is inappropriate.

FILES
/usr/lib/libcurses.a -lcurses library
/usr/lib/terminfo/?/* data bases
SEE ALSO

ex(1), termio(4), terminfo(5).

Hewlett-Packard -2- July 2, 1985

TMPFILE (3S) TMPFILE (38)

NAME
tmpfile - create a temporary file

SYNOPSIS
#include <stdio.h>
FILE *tmpfile ()
HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: System V
DESCRIPTION
Tmpfile creates a temporary file using a name generated by tmpnam(3S), and returns a
corresponding FILE pointer. If the file cannot be opened, an error message is printed using

perror(3C), and a NULL pointer is returned. The file will automatically be deleted when the pro-
cess using it terminates. The file is opened for update (“w+").

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), perror(3C), tmpnam(3S).

Hewlett-Packard -1- July 2, 1985

TMPNAM (3S) TMPNAM (3S)

NAME

tmpnam, tempnam - create a name for a temporary file

SYNOPSIS

#include <stdio.h>

char *tmpnam (s)
char *s;

char *tempnam (dir, pfx)
char xdir, *pfx;

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: System V

DESCRIPTION

NOTES

These functions generate file names that can safely be used for a temporary file.

Tmpnam always generates a file name using the path-prefix defined as P_tmpdir in the
<stdio.h> header file unless <stdio.h> has been locally modified. If s is NULL, tmpnam leaves its
result in an internal static area and returns a pointer to that area. The next call to tmpnam will
destroy the contents of the area. If s is not NULL, it is assumed to be the address of an array of
at least L_tmpnam bytes, where L_tmpnam is a constant defined in <stdio.h>; tmpnam
places its result in that array and returns s.

Tempnam allows the user to control the choice of a directory. The argument dir points to the
name of the directory in which the file is to be created. If dir is NULL or points to a string which
is not a name for an appropriate directory, the path-—prefix defined as P_tmpdir in the
<stdio.h> header file is used. If that directory is not accessible, /tmp will be used as a last
resort. This entire sequence can be up-staged by providing an environment variable TMPDIR in
the user’s environment, whose value is the name of the desired temporary-file directory.

Many applications prefer their temporary files to have certain favorite initial letter sequences in
their names. Use the pfz argument for this. This argument may be NULL or point to a string of
up to five characters to be used as the first few characters of the temporary—file name.

Tempnam uses malloc(3C) to get space for the constructed file name, and returns a pointer to
this area. Thus, any pointer value returned from tempnam may serve as an argument to free (see
malloc(3C)). If tempnam cannot return the expected result for any reason, i.e. malloc(3C) failed,
or none of the above mentioned attempts to find an appropriate directory was successful, a NULL
pointer will be returned.

These functions generate a different file name each time they are called.

Files created using these functions and either fopen(3S) or creat(2) are temporary only in the
sense that they reside in a directory intended for temporary use, and their names are unique. It is
the user’s responsibility to use unlink(2) to remove the file when its use is ended.

File names are initially of the form [a-z][a—z|[a—z]XXXXXX in the directory specified by either dir
(in tempnam) or L_tmpnam (in ¢mpnam) and are then passed to mktemp before returning the
result.

SEE ALSO

BUGS

creat(2), unlink(2), fopen(3S), malloc(3C), mktemp(3C), tmpfile(3S).

If called more than 17,576 times in a single process, these functions will start recycling previously
used names.

Between the time a file name is created and the file is opened, it is possible for some other process
to create a file with the same name. This can never happen if that other process is using these

Hewlett—-Packard -1- July 2, 1985

TMPNAM(3S) TMPNAM (3S)

functions or mktemp, and the file names are chosen so as to render duplication by other means
unlikely.

Hewlett-Packard -2- July 2, 1985

TRIG (3M) TRIG (3M)

NAME

sin, cos, tan, asin, acos, atan, atan2 - trigonometric functions

SYNOPSIS

#include <math.h>

double sin (x) float fsin (x)
double x; {float x;
double cos (x) float fcos (x)
double x; {float x;
double tan (x) float ftan (x)
double x; {float x;
double asin (x) float fasin (x)
double x; {float x;
double acos (x) float facos (x)
double x; {float x;
double atan (x) float fatan (x)
double x; ifloat x;
double atan2 (y, x) float fatan2 (y, x)
double y, x; {float y, x;

1 see important note below

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION

Sin, cos and tan return respectively the sine, cosine and tangent of their argument, z, measured
in radians.

Asin returns the arcsine of z, in the range -7/2 to 7/2.
Acos returns the arccosine of z, in the range 0 to .
Atan returns the arctangent of z, in the range -7/2 to /2.

Atan? returns the arctangent of y/z, in the range -7 to m, using the signs of both arguments to
determine the quadrant of the return value.

IMPORTANT NOTE: The corresponding single-precision routines fsin, fcos, ftan, fasin, facos,
fatan, and fatan2 expect true single-precision arguments, and therefore cannot be called from
standard C. They are provided for support of FORTRAN and Pascal.

HARDWARE DEPENDENCIES

Series 200/500:
The approximate limit for the values passed to these functions is 2.98E8 for sin and cos,
1.49E8 for tan, 1.29E4 for fsin and fcos, and 6.43E3 for ftan.

The algorithms used for all functions except atan2 and fatan? are from HP 9000 BASIC.

DIAGNOSTICS

Sin, cos, and tan lose accuracy when their argument is far from zero. For arguments sufficiently
large, these functions return zero when there would otherwise be a complete loss of significance.
In this case a message indicating TLOSS error is printed on the standard error output. errno is
set to ERANGE.

If the magnitude of the argument of asin or acos is greater than one, or if both arguments of
atan? are zero, zero is returned and errno is set to EDOM. In addition, a message indicating

Hewlett-Packard -1- July 9, 1985

TRIG (3M) TRIG (3M)

DOMAIN error is printed on the standard error output. .

Error handling is identical for both single- and double-precision routines, except for one con—
sideration: In any situation where the double-precision routine would return +HUGE, the
corresponding single-precision routine returns +MAXFLOAT.

These error-handling procedures may be changed with the function matherr(3M).

SEE ALSO
matherr(3M).

Hewlett-Packard -2- July 9, 1985

TSEARCH (3C) TSEARCH (3C)

NAME
tsearch, tfind, tdelete, twalk - manage binary search trees

SYNOPSIS
#include <search.h>

char stsearch ((char %) key, (char *x) rootp, compar)
int (+compar)();

char *tfind ((char %) key, (char ##) rootp, compar)
int (xcompar)();

char xtdelete ((char #) key, (char **) rootp, compar)
int (*compar)();

void twalk ((char *) root, action)
void (*action)();

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION

Tsearch, tfind, tdelete, and twalk are routines for manipulating binary search trees. They are
generalized from Knuth (6.2.2) Algorithms T and D. All comparisons are done with a user—
supplied routine, compar. This routine is called with two arguments, the pointers to the elements
being compared. It returns an integer less than, equal to, or greater than 0, according to whether
the first argument is to be considered less than, equal to or greater than the second argument.
The comparison function need not compare every byte, so arbitrary data may be contained in the
elements in addition to the values being compared.

Tsearch is used to build and access the tree. Key is a pointer to a datum to be accessed or
stored. If there is a datum in the tree equal to *key (the value pointed to by key), a pointer to
this found datum is returned. Otherwise, xkey is inserted, and a pointer to it returned. Only
pointers are copied, so the calling routine must store the data. Rootp points to a variable that
points to the root of the tree. A NULL value for the variable pointed to by rootp denotes an
empty tree; in this case, the variable will be set to point to the datum which will be at the root of
the new tree.

Like tsearch, tfind will search for a datum in the tree, returning a pointer to it if found. However,
if it is not found, tfind will return a NULL pointer. The arguments for tfind are the same as for
tsearch.

Tdelete deletes a node from a binary search tree. The arguments are the same as for tsearch.
The variable pointed to by rootp will be changed if the deleted node was the root of the tree.
Tdelete returns a pointer to the parent of the deleted node, or a NULL pointer if the node is not
found.

Twalk traverses a binary search tree. Root is the root of the tree to be traversed. (Any node in
a tree may be used as the root for a walk below that node.) Action is the name of a routine to be
invoked at each node. This routine is, in turn, called with three arguments. The first argument is
the address of the node being visited. The second argument is a value from an enumeration data
type typedef enum { preorder, postorder, endorder, leaf } VISIT; (defined in the <search.h>
header file), depending on whether this is the first, second or third time that the node has been
visited (during a depth-first, left-to-right traversal of the tree), or whether the node is a leaf.
The third argument is the level of the node in the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type pointer-to-element, and cast to
type pointer-to—character. Similarly, although declared as type pointer-to-character, the value
returned should be cast into type pointer-to—element.

Hewlett-Packard -1- July 2, 1985

TSEARCH (3C) TSEARCH (3C)

EXAMPLE
The following code reads in strings and stores structures containing a pointer to each string and a
count of its length. It then walks the tree, printing out the stored strings and their lengths in
alphabetical order.

#include <search.h>
#include <stdio.h>

struct node { /* pointers to these are stored in the tree */
char xstring;
int length;

b

char string_space[10000]; /* space to store strings */

struct node nodes[500]; /* nodes to store */

struct node *root = NULL; /* this points to the root */

main()

{
char sstrptr = string_space;
struct node *nodeptr = nodes;
void print_node(), twalk();
int i = 0, node_compare();

while (gets(strptr) != NULL && i++ < 500) {

/* set node */

nodeptr—>string = strptr;

nodeptr—>length = strlen(strptr);

/* put node into the tree x/

(void) tsearch((char *)nodeptr, &root,
node__compare);

/* adjust pointers, so we don’t overwrite tree */

strptr += nodeptr—>length + 1;

nodeptr++;
twalk(root, print_node);
}
/*
This routine compares two nodes, based on an
alphabetical ordering of the string field.
*/
int

node_compare(nodel, node2)
struct node *nodel, *node2;

{
return stremp(nodel—>string, node2—>string);
}
/*
This routine prints out a node, the first time
twalk encounters it.
*
/

Hewlett—Packard -2- July 2, 1985

TSEARCH (3C) TSEARCH (3C)

void

print_node(node, order, level)
struct node **node;

VISIT order;

int level;
{
if (order == preorder || order == leaf) {
(void)printf(“string = %20s, length = %d\n",
(#node)—>string, (*node)—>length);
}
}
SEE ALSO
bsearch(3C), hsearch(3C), Isearch(3C).
DIAGNOSTICS

A NULL pointer is returned by tsearch if there is not enough space available to create a new node.
A NULL pointer is returned by tsearch, tfind and tdelete if rootp is NULL on entry.
If the datum is found, both tsearch and ifind return a pointer to it. If not, tfind returns NULL,
and tsearch returns a pointer to the inserted item.

WARNINGS
The root argument to twalk is one level of indirection less than the rootp arguments to tsearch
and tdelete.
There are two nomenclatures used to refer to the order in which tree nodes are visited. Tsearch
uses preorder, postorder and endorder to respectively refer to visting a node before any of its chil-
dren, after its left child and before its right, and after both its children. The'alternate nomencla—-
ture uses preorder, inorder and postorder to refer to the same visits, which could result in some
confusion over the meaning of postorder.

BUGS
If the calling function alters the pointer to the root, results are unpredictable.

Hewlett—Packard -3- July 2, 1985

TTYNAME (3C) TTYNAME (3C)

NAME
ttyname, isatty - find name of a terminal

SYNOPSIS
char *ttyname (fildes)
int fildes;

int isatty (fildes)
int fildes;
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V
DESCRIPTION

Ttyname returns a pointer to a string containing the null-terminated path name of the terminal
device associated with file descriptor fildes.

Isatty returns 1 if fildes is associated with a terminal device, 0 otherwise.
FILES
/dev/«, /dev/x/*
DIAGNOSTICS
Ttyname returns a NULL pointer if fildes does not describe a terminal device in directory /dev.

BUGS
The return value points to static data whose content is overwritten by each call.

Hewlett-Packard -1- July 2, 1985

TTYSLOT (3C) TTYSLOT (3C)

NAME
ttyslot - find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ()

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V
DESCRIPTION
Ttyslot returns the index of the current user’s entry in the /etc/utmp file. This is accomplished
by actually scanning the file /etc/inittab for the name of the terminal associated with the stan—
dard input, the standard output, or the error output (0, 1 or 2).
FILES
/ete/inittab
/etc/utmp
SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS
A value of 0 is returned if an error was encountered while searching for the terminal name or if
none of the above file descriptors is associated with a terminal device.

Hewlett-Packard -1- July 2, 1985

UNGETC(38) UNGETC (3S)

NAME
ungetc - push character back into input stream

SYNOPSIS
#include <stdio.h>
int ungetc (c, stream)
int c;
FILE *stream;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
Ungetc inserts the character ¢ into the buffer associated with an input stream. That character, c,
will be returned by the next getc(39S) call on that stream. Ungetc returns c, and leaves the file
stream unchanged.
One character of pushback is guaranteed, provided something has already been read from the
stream and the stream is actually buffered. In the case that stream is stdin, one character may be
pushed back onto the buffer without a previous read statement.

If ¢ equals EOF, ungetc does nothing to the buffer and returns EOF.
Fseek(3S) erases all memory of inserted characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

DIAGNOSTICS
Ungetc returns EOF if it cannot insert the character.

Hewlett—Packard -1- July 2, 1985

VPRINTF (3S) VPRINTF (3S)

NAME
vprintf, viprintf, vsprintf - print formatted output of a varargs argument list

SYNOPSIS
#include <stdio.h>
#include <varargs.h>

int vprintf (format, ap)
char *format;
va_list ap;

int vfprintf (stream, format, ap)
FILE *stream;

char *format;

va_list ap;

int vsprintf (s, format, ap)
char *s, *format;
va_list ap;

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
vprintf, vfprintf, and vsprintf are the same as printf, fprintf, and sprintf respectively, except that
instead of being called with a variable number of arguments, they are called with an argument list
as defined by varargs(5).

EXAMPLE
The following demonstrates how ufprintf could be used to write an error routine.

#include <stdio.h>
#include <varargs.h>

/%

* error should be called like

* error(function_name, format, argl, arg2...);
*

/*VARARGS0x/

void

error(va_alist)

/* Note that the function_name and format arguments cannot be
* separately declared because of the definition of varargs.
*/

va_decl

{

va_list args;
char *fmt;
va_start(args);

/* print out name of function causing error */
(void)fprintf(stderr, "ERROR in %s: ”, va_arg(args, char *));
fmt = va_arg(args, char *);

/* print out remainder of message */

(void)viprintf(stderr, fmt, args);

Hewlett-Packard -1- July 2, 1985

VPRINTF (3S) VPRINTF (38)

va_end(args);
(void)abort();

SEE ALSO
printf(3S), varargs(5).

Hewlett—Packard -2- July 2, 1985

INTRO (4) INTRO (4)

NAME
intro - introduction to special files

HP-UX COMPATIBILITY
Remarks: In general, device drivers are not portable across systems; however, every effort has
been made to make their behavior portable. Due to variation in hardware, this is not
always possible. Programs which use these drivers directly are at higher than average
risk of not being portable.

DESCRIPTION
This section describes various special files that refer to specific HP peripherals and device drivers.
The names of the entries are usually derived from the type of device being described (disc, plotter,
etc.), not the names of the special files themselves. Characteristics of both the hardware device
and the corresponding HP-UX device driver are discussed where applicable.

The devices are divided into two catagories, unblocked and blocked. An unblocked device is
also called a raw or character-mode device. An unblocked device, such as a line printer, uses a
character special file.

Blocked devices, as the name implies, transfer data in blocks via the system’s normal buffering
mechanism. Block devices use block special files.

For specific details about the default special files shipped with your system, consult the System
Administrator Manual for your system.

The desired name is associated with a specific device when mknod(1M) is used to create a special
file for that device. The following naming convention is recommended for use when creating spe—
cial files (special file names are are independent of the hardware):

[r] dev_id [prod_no] [model initial] [sld1i] [] [digit]

where:
r if present, indicates that the device is treated as a raw device;
otherwise, the file is a block-mode file.

dev_id consists of one of the following mnemonics:
ct C8/80 catridge tape drive
hd hard disc
mt 9-track tape drive
fd flexible disc
Ip line printer

dig digitizer
plt plotter or graphics CRT display

prod_no HP product number for the device;

model _initial the letter suffix (if any) associated with the device model
number;

sidli used with the HP 9895A to specify Single-sided, Double-sided,

or IBM media format;

Jdigit used when two or more identical devices are connected to the
system; for example, if two HP 2631G printers are connected to
the system, their special file names would be [p2631g and
p2631¢.1 (they could also be named Ip and Ip.1).

HARDWARE DEPENDENCIES
Series 500:
Block special files cannot be opened for reading or writing.
The IBM format capability in the HP 9895A is not officially supported on HP-UX.

Hewlett—Packard -1- July 10, 1985

CT(4)

NAME

CT (4)

ct - cartridge tape access

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: HP

DESCRIPTION

This page describes the actions of the general HP-UX cartridge tape drivers when referring to a
cartridge tape as either a block-mode or character-mode (raw) device.

Cartridge tapes are designed for use as ‘“‘streaming” devices, and are not designed to start and
stop frequently. Like discs, they are technically “random access” devices, but such access is less
efficient and causes more tape and drive wear than streaming mode. While it is possible to use a
cartridge tape as a file system or random access storage device, such use will dramatically reduce
the life expectancy of tape cartridges and the tape drive itself.

Any CS/80 cartridge tape unit, whether built into a disc drive or operated as a standalone device,
can be accessed as a blocked or raw device.

Block special files access cartridge tapes through normal system buffering mechanisms. Buffering
is handled such that concurrent accesses through multiple opens or mounts on the same physical
device do not get out of phase. Block special files can be read and written without regard to phy—
sical cartridge tape records. Each I/O operation results in one or more logical block transactions.
Use of this mode is discouraged because it increases wear on tapes and drives.

Character special files provide a raw interface for transferring data directly between the cartridge
tape and the user’s read or write buffer. A single read or write operation always results in exactly
one I/O transaction. This is considerably more efficient than block-mode I/O which can require
several transactions to transfer the same amount of information and cannot handle the transfer
directly between the drive and user space.

Tcio(1) is provided on some systems so you can take advantage of the efficiencies of raw I/0,
while also making optimal use of the streaming capabilities of the cartridge tape drives. During
writes, buffers small transactions into larger data blocks that are optimal for cartridge tapes, and
reverses the process during reads. It is particularly designed for use as a complement to cpio for
handling backups.

During raw I/O, there may be implementation-dependent restrictions on the alignment of the
user buffer in memory and its maximum size. Also, each transfer must occur on a record boun—
dary and must read a whole number of records. Record size is hardware dependent, but is usually
1024 bytes. Use of tcio (1) hides all these issues.

Each raw access is independent of other raw accesses and of block accesses to the same physical
device. Thus, transfers are not guaranteed to occur in any particular order. Having multiple pro—
grams access the cartridge tape is, in effect, random access, and is subject to the warnings above.

In raw I/O, each operation is completed to the device before the call returns. For block-mode
writes, data may be cached until it is convienient for the system to write it. In addition, block—
mode reads potentially do a one (or more) block read-ahead. The interaction of block-mode and
raw access to the same cartridge tape is not specified, and in general is unpredictable. Because
block-mode writes can be delayed, it is possible for a program to generate requests much more
rapidly than the drive can actually process them. Flushing a large number of requests could take
several minutes, and during that time the system will not have use of the buffers taken by these
requests, and thus will suffer a possibly severe performance degradation. If the tape drive and the
system disc share a single controller, disc activity may be severely limited or stopped until the
buffers are flushed.

The name of a raw device (its character special file name) is typically the same as the name of the
corresponding blocked device (its block special file name) prefixed with an “r”.

Hewlett—Packard -1- July 9, 1985

CT(4) CT(4)

HARDWARE DEPENDENCIES
Series 500:

Block-special devices cannot be opened for I/0.

SEE ALSO
mkdev(1M), mknod(1M), tcio(1), intro(4), disc(4), mt(4), and the HP-UX System Administrator
Manual provided with your system.

Hewlett-Packard -2- July 9, 1985

DISC(4) DISC (4)

NAME
disc - direct disc access

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: HP
DESCRIPTION

This page describes the actions of the general HP-UX disc drivers when referring to a disc as
either a blocked or unblocked (raw or character special) device.

Block special files access discs via the system’s normal buffering mechanism. Buffering is done in
such a way that concurrent access through multiple opens or mounts of the same physical device
do not get out of phase. Block special files may be read and written without regard to physical
disc records. Each I/O operation results in one or more logical block transactions.

There is also a raw interface via a character special file which provides for direct transmission
between the disc and the user’s read or write buffer. A single read or write operation results in
exactly one transaction. Therefore raw I/O is considerably more efficient when many bytes are
transmitted in a single operation because blocked disc access requires potentially several transac—
tions and does not transmit directly to user space.

In raw I/O, there may be implementation dependent restrictions on the alignment of the user
buffer in memory. Also, each transfer must occur on a sector boundary and must read a whole
number of sectors. The sector size is a hardware dependent value (1024 bytes is the generally
preferred value).

Each raw access is independent of other raw accesses and of block accesses to the same physical
device. Thus, transfers are not guaranteed to occur in any particular order.

In both raw and blocked I/O, each operation is completed to the device before the call returns. In
addition, blocked I/O potentially does a one (or more) block read-ahead.

The name of a raw device (its character special file name) is typically the same as the name of the
corresponding blocked device (its block special file name) prefixed with an "r”.

SEE ALSO
intro(4), mkdev(1M), mknod(1M), and the HP-UX System Administrator Manual included with
your system.

WARNING
On some systems, having both a mounted file system and a block special file open on the same
device is asking for trouble; this should be avoided if possible. This is because it may be possible
for some files to have private buffers in some systems.

Like discs, the cartridge tape units in command set 80 disc drives are also accessed as blocked or
raw devices. However, using a cartridge tape as a file system will severely limit the life expec—
tancy of the tape drive. Tapes should only be used for system back-up and other needs where
data must be stored on tape, such as for transport or other uses.

Hewlett-Packard -1- July 9, 1985

GRAPHICS (4) Series 200 and 300 Only GRAPHICS (4)

NAME
CRT graphics - information for CRT graphics devices

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: HP
Remarks: This information is valid for Series 200 and 300 only.
DESCRIPTION

CRT graphics devices are frame-buffer based raster displays. These devices use memory mapped
I/O to obtain much higher performance than is possible with tty-based graphics terminals. CRT
graphics devices should only be accessed through the STARBASE libraries. They cannot be piped
or redirected to because they are not serial devices.

Special (device) files for CRT graphics devices are charactér special files with major number 12.
The minor number for CRT graphics devices is of the form:
0xSSTTXX

where SS is a one-byte select code number, TT is a one-byte type specifier, and XX is an unused
byte (should be zero).

The type field in the minor number is defined as follows:
0 auto-configures to one of the following:
a) low resolution graphics device at physical address 0x520000 (if present).

b) high resolution graphics device at physical address 0x560000 if low resolution
device at 0x520000 not present.

1 high resolution graphics device at physical address 0x560000 (unless there is no low
resolution device at 0x520000, in which case type 1 is invalid).

2 high or low resolution graphics device at the select code specified by the select code
field in the minor number.

Communication with a CRT graphics device is begun with an open system call. Multiple
processes may concurrently have the graphics device open.

Close shuts down the file descriptor associated with the graphics device. If the close is for the
last system wide open on the device then the graphics device is also unmapped from the user
address space; otherwise it is left mapped into the user address space (see GCUNMAP below).

Read and write system calls are undefined and will always return ENXIO.

Ioctl is used to control the graphics device. The valid ioctl commands (see <sys/graphics.h>)

are:
GCID return the identity of the CRT graphics device. The possible identities are:

= 98204A

2 = 9826A

3 = 9836A

4 = 9836C

5 = 98627A

6 = 98204B

7 = 9837

8 = 98700

Hewlett-Packard -1- November 15, 1985

GRAPHICS (4) Series 200 and 300 Only GRAPHICS (4)

9 = hp9000s300 displays

GCON, GCOFF
turn graphics “on” or “off”. May be a no-op for some devices.

GCAON, GCAOFF
turn alpha “on” or “off”. May be a no-op for some devices.

GCMAP map the CRT graphics device into the user address space at the address specified
in the ioctl argument. The argument is ’char **arg’. The value *arg is used as a
requested address. The actual mapping address is then returned in *arg. If *arg
is 0 then the system selects the first available address (see GCLOCK/GCUNLOCK
below).

GCUNMAP remove the mapping of the CRT graphics device from the user address space.

GCLOCK ensure exclusive use of the CRT graphics device.

GCUNLOCK
relinquish exclusive use of the CRT graphics device.

For all frame buffers the data bytes scan from left to right and from top to bottom. Some
displays map in control areas which must be skipped over to reach the frame buffer. Some devices
map individual bits to pixels, (dots on the screen.) Some map bytes or parts of bytes to pixels.
Lsb stands for least significant bit; msb stands for most significant bit.

98204A and 9826A
There are 300 lines of 100 bytes each. Only the odd numbered bytes are used. There
is a one bit per pixel, with msb left, and Isb right.

9836A and 98204B
There are 390 lines of 64 bytes each. There is a one bit per pixel, with msb left, and
Isb right.

9836C Starting 0x800 bytes from the base address, there are 390 lines of 512 bytes each. All
bytes are used. There is one byte per pixel. The bottom four bits of each byte are a
color map index for that pixel.

98627A Starting 0x8000 bytes from the base address, there are 3 buffers of 0x8000 bytes each.
The 3 buffers are the data for red, green, and blue. There is one bit per pixel, with
msb left, and Isb right. There are 64 bytes per line. The number of lines depends on
the setting of control registers.

9837 Starting 0x10000 bytes from the base address, there are 768 lines of 1024 bytes each.
There is one pixel per byte. The Isb of each byte corresponds to a pixel.

98700 Starting 0x10000 bytes from the base address, there are 768 lines of 1024 bytes each.
There is one pixel per byte. Each byte corresponds to the color map index of a pixel.

Hewlett-Packard -2- November 15, 1985

GRAPHICS (4) Series 200 and 300 Only GRAPHICS (4)

Series 300 Displays:
These displays have registers describing the display size. The following code computes
frame buffer width and height and determines what portion of the frame buffer is
being displayed.

/* unsigned char *base = <base address for display mapping>; */
buffer_width = (base[5] << 8) + base[7];

buffer_height = (base[9] << 8) + base|[11];

displayed_width = (base[13] << 8) + base[15];

displayed_height = (base[17] << 8) + base[19];

not_square = ((base[23] & 1) == 1);

Starting 0x10000 bytes from the base address, there are <buffer_width> lines of
<buffer_height> bytes each. There is one pixel per byte. Each byte corresponds to the color
map index of a pixel. On a monochrome display, the byte value is either 0, (black), or 1 (white).
If ((base[23] & 1) == 1) then pixels are twice as high as they are wide, and may be used in pairs
to produce square double pixels.

One shared memory descriptor (see shmget(2)) is used for each graphics device. Each shared

memory descriptor is accessible only through its graphics interface. Thus, any attempt to access
them through shmat(2)), shmctl(2)), shmdt(2)), etc. results in EACCESS errors.

ERRORS
[ENXIO] no such device or read/write not supported.
[ENOSPC] cannot allocate required resources for mapping.

[ENOMEM] cannot allocate sufficient memory for mapping.
[ENOTTY] bad ioctl command, or an ioctl was attempted on an open file.

SEE ALSO
mknod(8).

Hewlett-Packard -3- November 15, 1985

HPIB (4) HPIB (4)

NAME

hpib - hpib interface information

HP-UX COMPATIBILITY

Level: HP-UX/NON-STANDARD
Origin: HP

DESCRIPTION

HP-IB is Hewlett-Packard’s implementation of the Institute of Electrical and Electronic
Engineers Standard Digital Interface for Programmable Instrumentation. For more information
about the standard, consult any of the following documents:

IEEE Std 488-1978
IEC Pub 625-1
ANSI MC1.1

A read operation on a device connected to an HP-IB configures the computer as “listener” and
the device as “talker”. The read operation terminates when the number of bytes requested has
been transferred, a pattern termination character is matched, or the device asserts the EOI (end
or identify) line. A write operation configures the computer as “talker” and the device as
“listener”. The write operation terminates when the number of bytes specified has been
transferred and it has asserted EOL.

Devices connected to an HP-IB are addressed using three values. The first value, called the
magor value, is used to select the appropriate device driver. The second value is called the select
code. The select code refers to the I/O interface card or slot number to which the device is con—
nected. The third value is called the HP-IB address. The HP-IB address is usually set by an
in-line or rotary switch on the device itself. Refer to the device reference manual for information
on setting the HP-IB address.

This driver is also used to access HP-IB plotters, digitizers and printers in raw mode. A printer
in raw mode is used as a graphics device.

The HP-IB address is in the range 0 through 30, unless you want to use the device-independent
library (DIL) to talk to an I/O interface card on a raw bus (no automatic addressing). In this
case, use HP-IB address 31. For more details on DIL, refer to the hpibx(3D), z0%(3D), and
gpto*(3D) manual entries.

Terminating a write operation does not depend on an asserted EOL

HARDWARE DEPENDENCIES

Series 200:
The major value for HP-IB raw mode printers, plotters, and digitizers is always 21 (RAW
HP-IB).

Series 500:
The major value for HP-IB printers, plotters, and digitizers is always 12 for HP 27110
cards and 37 for the Model 550 internal HP-IB.

SEE ALSO

intro(4), mknod(1M), documentation for the specific device.

Hewlett-Packard -1- July 9, 1985

IOMAP (4) Series 200/300 Implementation IOMAP (4)

Status: R

NAME
iomap -- physical address mapping

HP-UX COMPATIBILITY
Level: HP-UX/NON-STANDARD

Origin: HP
Remarks: This information is valid for Series 200 and 300 only.
DESCRIPTION

The iomap mechanism allows the mapping (thus direct access) of physical addresses into the user
process address space. For Series 200/300 computers, the physical address space begins at
0x000000 and extends to OxfIffff.
The special (device) files for iomap devices are character special files with major number 10.
The minor number for iomap devices is of the form:

0xAAAANN
where AAAA is a two-byte address, and NN is a one-byte field.

The address portion of the minor number is formed by dividing the physical address by 65536.
NN*65536 is the size of the region to be mapped. For example, the minor number for a device at
0x720000 and 128k in size is 0x007202.

Access to the iomap devices is controlled by the file permissions set on the character special file.
Multiple processes may concurrently have iomap devices opened and mapped. It is the responsi-
bility of the processes to synchronize their accesses.
Read and write system calls are not supported.
Toctl is used to control the iomap device. The valid ioctl commands (see <iomap.h>) are:
IOMAPMAP
map the iomap device into the user address space at the address specified in the

ioct] argument. If the argument is 0 then the system selects the first available
address. Multiple processes may concurrently have the iomap device mapped.

IOMAPUNMAP
unmap the iomap device from the user address space.

Close shuts down the file descriptor associated with the iomap device. If the close is for the last
system wide open on the device then the iomap device is also unmapped from the user address
space; otherwise it is left mapped into the user address space (see IOMAPUNMAP above).

One shared memory descriptor (see shmget(2)) is used for each iomap device. Shared memory
descriptors are accessible only through the iomap interface. Consequently, attempts to access
them through shmat(2), shmctl(2), shmdt(2), etc. result in EACCESS errors.

WARNING
Tomap devices should be created and used with extreme caution. Inappropriate accesses to io dev-
ices or ram may result in a system crash.

ERRORS
[ENINVAL] address field out of range, ioctl command invalid.

[ENOMEM] cannot allocate required memory for mapping.
[ENODEV] read/write unsupported.
[ENXIO] no such address.

Hewlett-Packard -1- November 15, 1985

IOMAP (4) Series 200/300 Implementation IOMAP (4)

[ENOSPC] cannot allocate required resources for mapping.

[ENOTTY] bad ioctl command, or an ioctl was attempted on an open file.
SEE ALSO

mknod(8).

Hewlett-Packard -2- November 15, 1985

LP (4)

NAME

LP(4)

Ip - line printer

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: System V

DESCRIPTION

All file names in /dev containing the mnemonic Ilp are special files providing the interface to a
particular line printer. A line printer is a character special device which may optionally have an
interpretation applied to the data.

If the Ip mnemonic is preceded by the character r, then data is sent to the printer in rew mode.
(This could assume, for example, a graphic printer operation.) In raw mode, no interpretation is
done on the data to be printed, and no page formatting is performed. The bytes are simply sent
to the printer and printed as is.

If the lp mnemonic is not preceded by the character r, then the data is interpreted according to
rules discussed below. The driver understands the concept of a printer page in that it has a page
length (in lines), line length (in characters), and indent from the left margin (in characters). The
default line length, indent, lines per page, open and close page eject, and handling of backspace
are set to defaults determined when the printer is opened and recognized by the system the first
time. If the printer is not recognized, the default line length is 132 characters, indent is 4 charac—
ters, lines per page is 66, one page is ejected on close and none on open, and backspace is handled
for a character printer.

The following rules describe the interpretation of the data stream.
A form feed causes a page eject and resets the line counter to zero.
Multiple consecutive form-feeds are treated as a single form—feed.

The new-line character is mapped into a carriage-return/line-feed sequence, and if an
offset is specified a number of blanks are inserted after the carriage-return/line—feed
sequence.

A new-line that extends over the end of a page is turned into a form-feed.

Tab characters are expanded into the appropriate number of blanks (tab stops are
assumed to occur every eight character positions).

Backspaces are interpreted to yield the appropriate overstrike either for a character
printer or a line printer.

Lines longer than the line length minus the indent (i.e., 128 characters, using the above
defaults) are truncated.

Carriage-return characters cause the line to be overstruck.

Two doctl(2) system calls are available to control the lines per page, characters per line, and
indent. At either open or close time, if no page eject is requested, the paper will not be moved.

#include <sys/lprio.h>
ioctl (fildes, command, arg)
struct lprio *arg;

The commands are:

LPRGET Get the current printer status information and store in the Ilprio structure
referenced by arg.

LPRSET Set the current printer status information from the structure referenced by
arg.

Hewlett—Packard -1- July 9, 1985

LP(4) LP(4)

Thus, indent, page width and page length can be set with an external program. If the columns
field is set to zero, the defaults are restored at the next open.

FILES
/dev/lp default or standard printer used by some HP-UX commands;
/dev/[r]lp* special files for printers

HARDWARE DEPENDENCIES
Series 500:

The number of characters per line (80 or 132) and wrap-around can be selected/enabled
via the minor number in the mknod(1M) command. See the System Administrator
Manual for details.

The LPRGET and LPRSET ‘oct/ commands are not currently supported.

Series 200:
The uppercase-only flag, the no-overprint flag, the raw—mode flag, and no-page—eject—
on-open-or—close flag can be selected (enabled) by appropriate use of the minor number
in the mknod(1M) command. See the HP-UX System Administrator Manual for details.

Integral PC:
This version of lp is not supported on the Integral PC. Refer to the Integral Personal
Computer Programmer’s Guide for more information about the lp implementation on the
Intregral PC.

SEE ALSO
Ip(1), ioctl(2), intro(4).

Hewlett—Packard -2- July 9, 1985

MEM (4) MEM (4)

NAME

mem, kmem - core memory

HP-UX COMPATIBILITY

Level: HP-UX/Optional
Origin: System IIT

Remarks: Not all HP-UX systems provide the mem and kmem files. Programs which use them
cannot expect to be portable from one HP-UX implementation to another.

DESCRIPTION

FILES

Mem is a special file that is an image of the core memory of the computer. It may be used, for
example, to examine, and even to patch the system.

Byte addresses in mem are interpreted as memory addresses. References to non-existent locations
cause errors to be returned.

Examining and patching device registers is likely to lead to unexpected results when read-only or
write—only bits are present.

The file kmem is the same as mem except that kernel virtual memory rather than physical
memory is accessed.

Mem and kmem should always be protected so that only the super—user can read and write them,
othewise both privacy and system security are compromised.

/dev/mem, /dev/kmem

HARDWARE DEPENDENCIES

BUGS

Series 500:
Mem and kmem are not provided.

Series 200:
Memory does not begin at physical address 0. Instead, it occupies the upper portion of the
physical address space from 0x900000 through OxfIffff, beginning at address OxfHffff and
moving downward. Thus, if one megabyte of RAM is installed, it occupies addresses
0xf00000 through OxfffIff.

On some machines memory files are accessed one byte at a time, an inappropriate method for
some device registers.

Hewlett-Packard -1- July 9, 1985

MODEM (4) MODEM (4)

NAME

modem - asynchronous serial modem line control

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: HP

DESCRIPTION

This section describes the two modes of modem line control and the three types of terminal port
access. It also discusses the effect of several bits of the termio structure which affect modem line
control. The modem related ioctl(2) system calls are discussed at the end of the document.

There are several terms that are used within the following discussion which will be defined here
for reference. ‘“Modem control lines” (CONTROL) are generally defined as those outgoing modem
lines that are automatically controlled by the driver. ‘“Modem status lines” (STATUS) are gen-
erally defined as those incoming modem lines that are automatically monitored by the driver.
CONTROL and STATUS for a terminal file vary according to the modem line control mode of the
file (see Modem line control modes below). An open(2) to a port will be considered to be
blocked if it is waiting for another file on the same port to be closed. An open to a port will be
considered to be pending if it is waiting for the STATUS to be raised. An open to a port will be
considered to be successful if the open system call has returned to the calling process without
error.

Open flag bits

The only open flag bit recognized by the driver is the O_NDELAY bit. When this bit is set, an
open call to the driver will never become blocked. If possible, the open will be returned immedi-
ately as successful, and the driver will continue the process of opening the tty file. If it is not pos-
sible, then the open will be returned immediately with the appropriate error code as described in
the appropriate section.

Termio bits

The CLOCAL bit in the termio structure (see termio(4)) is used to remove the driver’s automatic
monitoring of the modem lines. However, the user’s ability to control the modem lines is deter-
mined only by the mode in effect and does not depend on the state of CLOCAL . Normally, the
driver will monitor and require the STATUS to be raised. An open system call will raise the CON-
TROL and wait for the STATUS before completing unless the CLOCAL bit is set. (If the
O_NDELAY bit is set, the open will be returned immediately, but the driver will otherwise con-
tinue to monitor the modem lines as normal based on the state of the CLOCAL bit.) If CLOCAL is
set when the last close(2) is issued to the port, the driver will not attempt to break any modem
connection which may exist unless the HUPCL bit is set (see below). Normally, loss of the
STATUS will cause the driver to break the modem connection and lower the CONTROL ; however,
if CLOCAL is set, any changes in the STATUS will be ignored. A connection is required before any
data may be read or written, unless CLOCAL is set. Any timers that would normally be in effect
(see Modem line control modes and Modem timers below) will be stopped while CLOCAL is
set.

When the CLOCAL bit is changed from clear to set, the driver will assume the existence of an
active device (such as a modem) on the port regardless of the STATUS . If any of the CONTROL
are raised at that point in time, they will continue in that state. The STATUS will no longer be
actively monitored. When the CLOCAL bit is changed from set to clear, the driver will resume
actively monitoring the STATUS . If all of the CONTROL are raised at that point in time, the
driver will attempt to begin or continue a modem connection. If any of the CONTROL are not
raised, the driver will break the modem connection. If any of the STATUS are not raised, the
driver will act as though those signals were lost as described in Modem line control modes
below. If the device is a controlling terminal, a hangup signal will be sent to the process group.

Hewlett-Packard -1- November 15, 1985

MODEM (4) MODEM (4)

The HUPCL bit in the termio structure determines the action of the driver regarding the CON-
TROL when the last close system call is issued to a terminal file. If the HUPCL bit is set, the
driver will lower the CONTROL at close time and the modem connection will be broken. If
HUPCL is not set and a modem connection exists, it will continue to exist, even after the close is
issued.

Terminal port access types

There are three types of modem access: call-in connections, call-out connections, and direct (no
modem control) connections. A given port may be accessed through all three types of connection
by accessing different files. The modem access type of a terminal file is determined by the file’s
major and/or minor device numbers.

The call-in type of access is used when the connection is expected to be established by an incom-
ing call. This is the type that would be used by getty(1M) to accept logins over a modem. When
an open is issued to such a file, the driver may wait for an incoming call and will then raise the
CONTROL based on the current mode (see below) of the port. When the port is closed, the driver
may lower the CONTROL depending on the HUPCL bit.

The call-out type of access is used when the connection is expected to be established by an outgo-
ing call. This would be used by programs such as uucp(1). When an open is issued to such a file,
the driver will immediately raise the CONTROL and wait for a connection based on the mode
currently in effect. When the port is closed, the driver may lower the CONTROL depending on
the HUPCL bit.

The direct type of access is used when no driver modem control is desired. This could then be
used for directly connected terminals that use a three-wire connection, or to talk to a modem
before a connection has been established. The second case allows a program to give dialing
instructions to the modem. Neither the CLOCAL nor the HUPCL bits have any effect on a port
accessed through a direct file. (However, both bits may be inherited by other types of files; see
Terminal port access interlock below.) An open to a direct file does not affect the CONTROL
and does not depend on any particular state of the STATUS to succeed. When the file is closed,
the driver will not affect the state of the CONTROL . If a modem connection has been established,
it will continue to exist. Setting the speed of a direct file to BO (see termio(4)) will be considered
an impossible speed change and will be ignored. It will not affect the CONTROL .

Modem line control modes

There are two modes of modem line control: CCITT mode and simple mode. A given port may
have only one of these two modes in effect at any given point in time. An attempt to open a port
with a mode other than the one in effect (from a pending or successful open on a different file) will
cause the open to be returned with an ENXIO error. The modem access type of a terminal file is
determined by the file’s major and/or minor device numbers.

CCITT mode is used for connections to switched line modems. The CONTROL for CCITT mode
are Data Terminal Ready (DTR) and Request to Send (RTS). The STATUS are Data Set Ready
(DSR), Data Carrier Detect (DCD), and Clear to Send (CTS). Additionally, the Ring Indicate (RI)
signal indicates the presence of an incoming call. When a connection is begun (an incoming call
for a call-in file or an open issued to a call-out file), the CONTROL are raised and a connection
timer (see Modem timers below) is started. If the STATUS become raised before the time period
has elapsed, a connection is established and the open request is returned successfully. If the time
period expires, the CONTROL are lowered and the connection is aborted. For a call-in file, the
driver will wait for another incoming call; for a call-out file, the open will be returned with an EIO
error. Once a connection is established, loss of either DSR or CTS will cause the CONTROL to be
lowered and a hangup signal to be generated if the device is a controlling terminal. If DCD is lost,
a timer is started. If DCD resumes before the time period has expired, the connection will be
maintained. However, no data transfer will occur during this time. The driver will stop transmit-
ting characters, and any characters received will be discarded. If DCD is not restored within the
allotted time, the connection will be broken as described above for DSR and CTS . If the modem

Hewlett-Packard -2- November 15, 1985

MODEM (4) MODEM (4)

connection is to be broken when the close system call is issued (i.e. HUPCL is set), then the CON-
TROL will be lowered and the close will be returned as successful. However, no further opens will
be allowed until after both DSR and CTS have been lowered by the modem, and the hangup timer
(see Modem timers below) has expired. The action taken in response to an open during this
time will be the same as if the port were still open. (See Terminal port access interlock
below.)

When a port is in CCITT mode, the driver has complete control of the modem lines and the user
is not allowed to change the setting of the CONTROL or affect which STATUS are actively moni-
tored by the driver (see Modem ioctls below). This is to provide strict adherence with the
CCITT recommendations.

Simple mode is used for connections to devices which require only a simple method of modem line
control. This can include devices such as black boxes, data switches, or for system-to-system con-
nections. It can also be used with modems which can not operate under the CCITT recommenda-
tions. The CONTROL for simple mode consists of only DTR . The STATUS consists of only DCD .
When an open is issued, the CONTROL is raised but no connection timer is started. When the
STATUS becomes raised, a connection is established and the open request is returned successfully.
Once a connection is established, loss of the STATUS will cause the CONTROL to be lowered and a
hangup signal to be generated if the device is a controlling terminal.

When a port is in simple mode, the driver will normally control the modem lines. However, the
user is allowed to change the setting of the CONTROL (see Modem ioctls below).

Terminal port access interlock

An interlock mechanism is provided between the three access types of terminal files. It prevents
more than one file from being successfully opened at a time, but allows certain opens to succeed
while others are pending so that a port can be opened through a call-out connection while getty
has a pending open at a call-in connection. The three access types are given a priority that deter-
mines which open will succeed if more than one file has an open issued against it. The three
access types are ordered from lowest priority to highest as follows: call-in, call-out, and direct.

If an open is issued to a port which already has a successful open on it of a lower priority type,
the new open will be returned with an EBUSY error. (EBUSY will also be returned if a CCITT
call-in file is not yet successful, but has received an incoming call indication.) If the lower priority
open is pending, the new open will succeed if possible, or will be left pending if waiting for the
STATUS . If a higher priority open has succeeded or is pending, the new open will be blocked,
unless the new open has the O_NDELAY flag bit set, in which case the open will be returned with
an EBUSY error. Once an open on one type of file is successful, any pending opens on lower
priority files will become blocked.

When a file of one priority is closed, a blocked open on the next lower priority type file will
become active. If all of the STATUS are raised, the open will succeed, otherwise the open will
become pending waiting for the STATUS . If the lower priority open is successful (because the
connection was maintained when the higher priority file was closed), the port characteristics
(speed, parity, etc.) that were set by the higher priority file will be inherited by the lower priority
file. If the connection is not maintained through the close, the port characteristics will be set to
default values at the next successful open.

Modem timers

There are four timers currently defined for use with modem connections. The first three of the
timers are applicable only to CCITT mode connections. In general, the effect of changing a timer
value while the timer is running is system dependent. However, setting the timer value to zero is
guaranteed to disable the timer even if it is running.

The connect timer is used to limit the amount of time to wait for a connection to be established
once it has been begun. This timer is started when an incoming call has been received on a call-in
file, or when an open has been issued on a call-out file for which no opens are already pending. If

Hewlett-Packard -3- November 15, 1985

MODEM (4) MODEM (4)

the connection is completed in time, the timer is aborted. If the time period expires, the connec-
tion is aborted. For a call-in file, the driver will again wait for an incoming call and the open will
remain pending. For a call-out file, the open will be returned with an EIO error.

The carrier detect timer is used to limit the amount of time o wait before causing a disconnect if
DCD drops. If carrier is not re-established in this time, a disconnect will occur. If carrier is re-
established before the timeout, the timer will be aborted and the connection maintained. During
the period when carrier is not raised, no data will be transferred across the line.

The no activity timer is used to limit the amount of time a connection will remain open with no
data transfer across the line. When the data line becomes quiescent with no data transfer, this
timer will be started. If data is again transferred over the line in either direction before the time
limit, the timer will be aborted. If no activity occurs before the timeout has occurred, the driver
will disconnect the line. This can be used to avoid long and costly telephone connections when
data transfer has been stopped either normally or abnormally.

The last timer defined, the hangup timer, is used for both CCITT and simple modes. This timer
controls the amount of time to wait after disconnecting a modem line before allowing another
open to be allowed. This time period should be made long enough to guarantee that the connec-
tion has been terminated by the telephone switching equipment. If this period is not long enough,
the telephone connection may not be broken and a succeeding open may complete with the old
connection.

Modem ioctls

Several ioctl system calls apply to manipulation of modem lines. They use the following informa-
tion defined in <sys/modem.h>.

#define NMTIMER 6

typedef unsigned long mflag;

struct mtimer {

unsigned short m_ timers]NMTIMER];

}1
Individual modem lines are represented by bits in an unsigned long variable as follows:
MRTS 00010000000 Request to Send outbound
MCTS 00004000000 Clear to Send inbound
MDSR 00002000000 Data Set Ready inbound

MDCD 00000400000 Data Carrier Detect inbound
MDTR 00000000040 Data Terminal Ready outbound
MRI 00000000010 Ring Indicator inbound
MDRS 00000000004 Data Rate Select outbound

The timer values are defined in the array m timers. The relative position of the timer and
default initial values and units for each timer are as follows:

0 MTCONNECT 25s

1 MTCARRIER 400 ms
2 MTNOACTIVITY 0 min
3 'MTHANGUP 250 ms
4 Reserved

5 Reserved

A value of zero for any timer will disable that timer.
The modem line ¢oct! system calls have the form:

ioctl] (fildes, command, arg)
unsigned long *arg;

Hewlett-Packard -4- November 15, 1985

MODEM (4) MODEM (4)

The commands using this form are:

MCGETA Get the current state of both inbound and outbound modem lines and store
in the unsigned long referenced by arg. A raised line will be indicated by a
one bit in the appropriate position.

MCSETA Set the outbound modem lines from the unsigned long referenced by arg.
Setting an outbound bit to one causes that line to be raised and zero to be
lowered. Setting bits for inbound lines has no effect. Setting any bits while
in CCITT mode has no effect. The change to the modem lines is immediate
and using this form while characters are still being output may cause
unpredictable results.

MCSETAW Wait for the output to drain and set the new parameters as described
above.

MCSETAF Wait for the output to drain, then flush the input queue and set the new
parameters as described above.

The timer value zoct! system calls have the form:

ioctl (fildes, command, arg)
struct mtimer *arg;

The commands using this form are:

MCGETT Get the current timer value settings and store in the miimer structure refer-
enced by arg.

MCSETT Set the timer values from the structure referenced by arg.
For any timer, setting the timer value to its previous value has no effect.

FILES
/dev/ttyx
/dev/ttyds*
/dev/culx
/dev/cuax

HARDWARE DEPENDENCIES
Series 500:
For the HP27140A 6-port modem multiplexer, the ranges and resolutions of the timers are
as follows:
MTCONNECT 0-255 sec, 1 sec resolution
MTCARRIER 0-2550 msec, 10 msec resolution
MTNOACTIVITY 0-1092 min, 1 min resolution

MTHANGUP 0-65535 msec, 10 msec resolution
If a timer is set out of its range, then the maximum value that timer can assume is used
instead.

For the HP27128A Asynchronous Serial Interface, the ioct! requests described above are
not supported. The timers have fixed values as follows:

MTCONNECT 25 sec

MTCARRIER 400 msec

MTNOACTIVITY 0 min

MTHANGUP 500 msec

This interface only supports the call-in and call-out port access types, and does not sup-
port the direct access type.

It is not possible to change the state of the CLOCAL bit when using CCITT mode.

Hewlett-Packard -5- November 15, 1985

MODEM (4) MODEM (4)

Simultaneous call-in and call-out open atempts in CCITT mode are not allowed.

The default state of the CLOCAL bit upon first open is determined by the state of switch
on the interface (See the System Administrator Manual).

SEE ALSO
stty(1), mknod(1M), ioctl(2), termio(4).
HP-UX System Administrator Manual

WARNING
It is occasionally possible that a process may open a call-out file at approximately the same time
as an incoming call is received. In some cases, the call-out connection may be satisfied by the
incoming call. In general, however, the results are indeterminate. If necessary, the situation can
be avoided by the use of two modems and ports, one for call-out connections and the other for
receiving incoming calls.

Hewlett-Packard -6- November 15, 1985

MT(4) MT (4)

NAME

magtape - magnetic tape interface and controls

HP-UX COMPATIBILITY

Level: Magnetic Tape Support — HP-UX/RUN ONLY
Origin: UCB and HP

DESCRIPTION

The files /dev/mt* and /dev/rmt# refer to specific tape drives; the behavior of the specific unit
is specified by several bits in the least significant digit of the minor number in the mknod(1M)
command.

There are three bits controlling the operation of the tape drive. These bits are usually encoded
into the minor number of mknod(8). Refer to the System Administrator Manual for your com-
puter for details.

rewind When this bit is cleared, the tape is automatically rewound upon close. This is normally
done for units numbered 0-3 and 8-11.

mode When this bit is set, the tape drive behaves like the Berkeley tape drivers; when clear the
driver behaves like System III. The details are described below. The ioct! operations
described below work in both modes on raw tapes only.

density When cleared, the tape drive is run at 1600 bpi; when set it is run at 800 bpi. The 800
bpi drives are usually numbered 0-7, and 1600 bpi are usually numbered 8-15.

When opened for reading or writing, the tape is assumed to be positioned as desired.

When a file is opened for writing and then closed, a double end-of-file (double tape mark) is writ—
ten. If the device has the rewind bit set, the tape is rewound; otherwise, the tape is positioned
before the second EOF just written.

When a read-only file is closed and the rewind bit is set, the tape is rewound. If the rewind bit is
not set, the behavior depends on the mode bit. For System III compatibility, the tape is posi—
tioned after the EOF following the data just read. For Berkeley compatibility, the tape is not re—
positioned in any way.

The EOF is returned as a zero-length read.
By judiciously choosing mt files, it is possible to read and write multi-file tapes.

A tape treated as a block device consists of several 512 byte records terminated by an EOF. To
the extent possible, the system makes it possible to treat the tape like any other file. Seeks have
their usual meaning and it is possible to read or write a byte at a time (although very inadvis-
able).

The mt files discussed above are useful when it is desired to access the tape in a way compatible
with ordinary files. When foreign tapes are to be dealt with, and especially when long records are
to be read or written, the raw interface is appropriate. The raw interface is described below.

The special files associated with a raw tape interface are named rmt#+. Each read or write call
reads or writes the next record on the tape. In the write case the record has the same length as
the buffer given.

During a read, the record size is passed back as the number of bytes read, up to the buffer size
specified. The number of bytes ignored is available in the mt_resid field of the mtget structure
via the MTIOCGET call of 7octl. In raw tape I/O, the buffer and size may have implementation

- dependent alignment restrictions. Seeks are ignored, instead the ¢octl operations described below
are available. An EOF is returned as a zero-length read, with the tape positioned after the EOF,
so that the next read will return the next record.

Using Ioctl With Magnetic Tape

Hewlet

The doctl system call can be used to manipulate magnetic tapes; refer to the include file

t—Packard -1- July 10, 1985

MT (4) MT (4)

Jusr/include/sys/mtio.h for a description of the possible operations.
The following code fragment shows how an 7oct! call might be used to perform several mag tape
operations:

#include <sys/types.h>
#include <sys/mtio.h>
#include <stdio.h>
main(arge, argv)

int arge;

char *argv(];

int fd;

struct mtop top;

/* open mag tape device file */
top.mt__count = 1;
switch(xargv(1]) {

case /11: /* write an eof */
top.mt_op = MTWEOF;
break;

case /2/: /* rewind the tape */
top.mt_op = MTREW,;
break;

case /3 /* backspace record */
top.mt_op = MTBSR;
break;

default:
fprintf(stderr, “Unknown option: %s0, argv[1]);
exit(1);
break;

}
fd = ioctl(fd, MTIOCTOP, &top);
}

This program accepts one argument which selects the operation to perform. The structure tem-
plate mtop is defined in sys/mtio.h, and contains two parameters defining the operation to per—
form (mt_op) and how many operations to perform (mi_count). All constants used above (plus
many others not used) are defined in sys/mtio.h.

HARDWARE DEPENDENCIES

Series 200:
Block magnetic tape is not supported.
The density bit cannot select 800 bpi; 800 bpi is not supported.
The settings of the mode, rewind, and density bits are reflected in the minor numbers
used to create the special file names (see mkdev(8)).

Series 500:
Block magnetic tape is not supported.
The density bit cannot select 800 bpi; 800 bpi is not supported.

FILES
/dev/mt*
/dev/rmtx

Hewlett-Packard -2- July 10, 1985

MT (4) MT (4)

SEE ALSO
intro(4), mkdev(1M), mknod(1M), and the HP-UX System Administrator Manual included with
your system.

Hewlett-Packard -3- July 10, 1985

NULL(4) NULL (4)

NAME
null - null file ("bit bucket”)

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

Hewlett—Packard -1- July 9, 1985

PTY(4)

NAME

PTY (4)

pty - pseudo terminal driver

SYNOPSIS

HP-UX

pseudo—device pty

COMPATIBILITY
Level: HP-UX/STANDARD

Origin: Berkeley 4.2

DESCRIPTION

The pty driver provides a communication path between an HP-UX application process and a sup—
porting server process, and behaves much like a terminal/computer communication path. It is
structured so that output from either process acts as input to the other, thus the term
pseudoterminal. The slave-side of pty interacts with the application process, and its behavior is
defined by termio(4). The master-side of pty interacts with the server process which controls the
application process through pty as if pty were a hardware terminal interface.

The following ¢octl requests, defined in <sys/ptyio.h>, apply only to master side of pty:

TIOCBREAK
Causes a break operation to be done on the slave side of the pty. This action is the same
as if a user had hit the break key on a real terminal. Takes no parameters.

TIOCSIGSEND
Causes a signal to be sent on the slave side of the pty to the current tty process group of
the slave side. The value of the parameter is taken to be the signal number to be sent.
An EINVAL error will be returned and no signal sent if the specified signal number does
not refer to a legal signal (see signal(2)). Note that this request allows the server process
to send signals to processes that are not owned by the same user id.

TIOCSTOP
Stops data flowing from the slave side of the pty to the master side (e.g. like typing °S).
Takes no parameters.

TIOCSTART
Restarts output (stopped by TIOCSTOP or by typing °S). Takes no parameters.

TIOCPKT

Enable/disable packet mode. Packet mode is enabled by specifying (by reference) a
nonzero int parameter and disabled by specifying (by reference) a zero int parameter.
When applied to the master side of a pseudo terminal, each subsequent read from the
master side will return data written on the slave part of the pseudo terminal preceded by
a zero byte (symbolically defined as TIOCPKT_DATA), or a single byte reflecting con—
trol status information. In the latter case, the byte is an inclusive-or of zero or more of
the bits:

TIOCPKT_FLUSHREAD
whenever the read queue for the slave side is flushed.

TIOCPKT_FLUSHWRITE
whenever the write queue for the slave side is flushed.

TIOCPKT_STOP
whenever data flowing from the slave side of the pty to the master side is stopped
by means of S, TIOCSTOP, or TCXONC.

TIOCPKT_START
whenever data flowing from the slave side of the pty to the master side is res—
tarted.

Hewlett—Packard -1- July 10, 1985

PTY (4) PTY (4)

TIOCPKT_DOSTOP
whenever the stop and start characters get set to "8/°Q.

TIOCPKT_NOSTOP
whenever the stop and start characters get set to something other than "S/"Q.

TIOCREMOTE

A mode for the master half of a pseudo terminal, independent of TIOCPKT. This mode
causes input to the pseudo terminal to be flow controlled and not input edited (regardless
of the terminal mode). Each write to the master side produces a record boundary for the
process reading the slave side. In normal usage, a write of data is like the data typed as a
line on the terminal; a write of 0 bytes is like typing an end-of-file character (the EOF
character as defined in termio(4)). The data read by the slave side is identical to the
data written on the master side. Data written on the slave side and read on the master
side with TIOCREMOTE enabled is still subject to the normal termio(4) processing.
TIOCREMOTE can be used when doing remote line editing in a window manager, or
whenever flow controlled input is required. The request takes one int sized parameter,
passed by value. When zero, it disables TIOCREMOTE; when one it enables
TIOCREMOTE. TIOCREMOTE is only effective when TIOCTTY (explained below) is
also enabled, and all data buffered in the pseudo terminal will be flushed when this
request is made.

TIOCTTY

Enable or disable all termio(4) processing by pty. When disabled, all data is passed
through the pty with no modification. Termio(4) processing (of input and output such as
tab expansion) is enabled by specifying (by reference) a nonzero int parameter and dis-
abled by specifying (by reference) a zero int parameter. Default is to be enabled. When
TIOCTTY is disabled, the following pty modes are also inoperable: TIOCBREAK,
TIOCSTOP, TIOCSTART, TIOCPKT, TIOCREMOTE, and TIOCMONITOR. Issuing
a TIOCTTY ioctl request will also flush all data buffered in the pseudo terminal, and
release any processes currently blocked waiting for data.

When TIOCTTY is enabled (the default case), all termio(4) ioctl requests are handled by
the pty driver itself. When TIOCTTY is disabled, slave side termio(4) ioctl requests are
either ignored completely or passed to the master side depending upon the state of TIOC-
TRAP below. Slave side non-termio(4) ioctl requests are not affected by the state of
TIOCTTY. They are always ignored completely or passed to the master side depending
upon the state of TIOCTRAP below.

Data being written through a pseudo terminal with TIOCTTY disabled will be handled in
a manner similar to the way data flows through a pipe. A write request will block in the
pty until all of its data has been written into the pty. A read request will block if there is
no data available unless the O_NDELAY flag is set (see fentl(2)). When data is avail-
able to be read, the read request will return whatever is available, and will not wait for
the number of bytes requested to be satisfied. The number of bytes a pty can contain in
its internal memory is implementation dependent, but will always be at least 256 bytes in
each direction. For example, a write on the slave side of a pty of 1024 bytes might be
read on the master side by four read requests returning 256 bytes each. The size of the
chunks of data that are read is not guaranteed to be consistent, but no data will be lost.

Opening and closing of the master side acts as a modem connection/disconnection on a real termi-
nal as far as the slave side is concerned. Having no server on the master side will cause opens on
the slave side to hang until there is a server. (termio(4) description of O_NDELAY interaction
with pty is also supported.) Opens to the master side are exclusive. Attempts to open an already
open master side of a pty will return errno(2) error EBUSY. (Attempts to open a non-existent
pty will return errno(2) ENXIO.) Closing the master side of a pty sends a SIGHUP hangup sig-
nal to the tty process group number of the corresponding slave side and flushes pending input and

Hewlett—Packard -2- July 10, 1985

PTY(4) PTY (4)

output.

Any termio(4) ioctl request can also be applied to the master side of the pty, unless TIOCTTY
has been disabled.

IOCTL/OPEN/CLOSE TRAPPING

The capabilities that follow give additional flexibility and control for servers connected to the
master side.

When trapping of ioctl/open/close is enabled, ioctl(2), open(2), and close(2) requests made to the
slave side will notify the server on the master side of each request. The close request will only
notify the server and continue to completion, while the open and ioctl requests will not complete
until the master side has had a chance to handle them. The master side acknowledges completion
via an ioctl to the master side. If the pty is not enabled to pass ioctl(2), open(2), and close(2)
from the slave to the master, then they will be ignored (except for termio(4) related processing).

The following ioctl calls apply only to the master side of a pty and pertain to trapping open, close,
and ioctl. They are also defined in <sys/ptyio.h>:

TIOCTRAP
Enable or disable trapping of ioctl, open, and close from the slave side. Trapping is
enabled by specifying (by reference) a nonzero int parameter and disabled by specifying
(by reference) a zero int parameter. Default is to be disabled. (termio(4) ioctl requests
will not be trapped, unless TIOCTTY is also disabled or TTOCMONITOR is enabled.)

TIOCTRAPSTATUS
Find out if any ioctl/open/close traps are pending. The argument points to an int, that
will be set to one if anything is pending and zero if nothing is pending. This ioctl request
is used when the preferred method of a select(2) “exceptional condition” is not available.

TIOCREQGET
In response to a select(2) ‘“‘exceptional condition” on the master side, this ioctl request
will read the pending ioctl, open, or close information into memory pointed to by the
argument in the form:

struct request_info {
int request;
int argget;
int argset;
short pgrp;
short pid;
int errno__error;
int return__value;

b
All elements of request_info refer to the slave side of the pty. Enumerating the elements:
request is the ioctl command received.
argget is the ioctl request to apply to master side to receive the trapped ioctl

structure if there is one to receive, (a zero value means there is none).
(When nonzero, argget is a TIOCARGGET request with the size field
precomputed.)

argset is the ioctl request to apply to master side to send back the resulting ioctl
structure if there is one to send back, (a zero value means there is none).
(When nonzero, argset is a TIOCARGSET request with the size field
precomputed.)

Hewlett-Packard -3- July 10, 1985

PTY (4) PTY (4)

PErp is the process group number of the process doing the operation.
pid is the process id of the process doing the operation.
errno_error is the errno(2) error code (initialized to zero) to be returned by ioctl on

the slave side.

return_value (initialized to zero) is the success value to be returned by ioctl on the
slave side when errno—error is not set.

Tor the case that the ioctl argument received on the slave side is not a pointer, its value
is stored as four bytes that can be retrieved with an ioctl request to the master side equal
to argget.

When an open or close is being passed, request will be set to TIOCOPEN or TIOC-
CLOSE, respectively. For TIOCOPEN and TIOCCLOSE, both argget and argset will be
of zero because there is no ioctl structure. When TIOCTTY is enabled, the termio(4)
definition of open/close will be executed first, before being passed to the master side.
Note, while all opens are trapped, only the last close on a particular inode for a pty slave
side is trapped by the pty.

If a TIOCREQGET is done before anything has been trapped, this master side ioctl will
block until a slave side ioctl, open, or close is trapped.

TIOCREQSET
Done to complete the handshake started by a previous TIOCREQGET. The argument
should point to the request_info structure as defined by the TIOCREQGET.

Before doing this ioctl, to complete the handshake, the server should set errno—error to
an errno(2) error value to be passed back to the slave side. If there is no error,
errno—error can be left alone because the pty will have initialized it to zero. Also, when
there is no error, return_value should be set, if other than a zero result is desired. It
should be noted that the ability to determine the return value and error code for a
request to the slave side is only available for trapped ioctl requests. The server will not
be able to set these values if the trapped request is an open or a close.

If the TIOCREQSET request is made and request in the passed request_info structure
does not equal the trapped value, errno(2) EINVAL will be returned. (EINVAL is also
returned if there is no trapped ioctl/open/close.)

If the trapped slave-side request has been interrupted by a signal between the time that
the server has done the TIOCREQGET and the TIOCREQSET, an EINVAL error will
be returned by the TIOCREQSET request.

TIOCMONITOR
Enable or disable read only trapping of termio ioctl requests when TIOCTTY is also
enabled. (When TIOCTTY is disabled, TIOCMONITOR has no effect. Also TIOC-
MONITOR is independent of TTOCTRAP.) Trapping is enabled by specifying (by refer—
ence) a nonzero int parameter and disabled by specifying (by reference) a zero int param-
eter. Default is to be disabled.

This allows a server process attached to the master side of the pty to know when charac—
teristics of the line discipline in the pty are changed by an application on the slave side.
The mechanism for handshaking trapped termio(4) requests (when TIOCTTY is enabled)
is the same as that for non-termio(4) ioctl requests; except that any changes or error con-
ditions set by the server on the master side will have no effect. (It is recommended that
termio(4) ioctl requests be used on the master side to interrogate the configured state of
the line discipline in the pty. One reason for this is to compensate for the window of time
before TTIOCMONITOR is enabled, when termio(4) ioctls were not trapped.)

When using select(2) on the master side of a pty, the ‘‘exceptional condition” refers to an open,
close, or ioctl pending on the slave side. Ready for reading or writing refers to a read, or write

Hewlett—Packard -4 - July 10, 1985

PTY (4) PTY (4)

pending respectively, from the point of view of the master side.

Of the ioctls that are subject to being trapped, only one per pty may be handled at one time.
This means that when an application does a non-termio(4) ioctl to the slave side, all other ioctls
to the same pty slave side will be blocked until the first one is handshaked back by the master
side. (Ioctls that are not trapped, such as termio(4) when TIOCTTY is enabled and TIOCMON-
ITOR is disabled, will not be blocked.) This permits the implementation of indivisible operations
by an ioctl call on the slave side that is passed to the server process.

In summary, handshaking of an ioctl/open/close on the master side is done using the following
steps:

Slave Side open/close/ioctl Trapped.
This is indicated via a select(2) exceptional condition or via the TIOC-
TRAPSTATUS ioctl request.

TIOCREQGET ioctl request.
This is done to find out what slave open/close/ioctl is trapped.

argget ioctl request.
This optional ioctl is done if argget is nonzero and the server wants to do more
than just reject the trapped slave ioctl.

argset ioctl request.
This optional ioctl is done if argset is nonzero and the server wants to pass back a
modified ioctl structure. It is done after the trapped ioctl is processed via the
server on the master side.

TIOCREQSET ioctl request. .
This is done to complete the trapped slave open/close/ioctl. In case the trapped
request is an ioctl, errno_error should be set appropriately. return_value should
be set for trapped slave ioctls if errno_error is set to zero.

While a process is waiting in the slave side of the pty for the server to complete a handshake, it is
susceptible to receiving signals. The following master side ioctl allows the server process to con—
trol how the pty will respond when a signal attempts to interrupt a trapped open or ioctl request.

TIOCSIGMODE
Sets the signal handling state of the pty to the mode specified as the argument. The
mode can have three values, which are TIOCSIGBLOCK, TIOCSIGABORT, and TIOC-
SIGNORMAL.

TIOCSIGBLOCK

Causes some signals that are destined for the process whose open/ioctl is trapped
to be postponed. The signals that are blocked are those which would otherwise
cause the process to jump to an installed signal handler. Signals that are
currently being ignored or would cause the slave-side process to be aborted will
not be held off. When the server process completes the handshake by means of
the TIOCREQSET ioctl request, the slave-side process will return to the calling
program, and any pending signals will then be acted upon. Any signals that the
user has blocked by means of sigblock(2) will continue to be blocked.

TIOCSIGABORT
Forces all signals that interrupt a trapped open/ioctl request to not be restart—
able. The server process will set this mode when it wants the interrupted
requests to return to the calling program with an EINTR error.

TIOCSIGNORMAL
This is the default mode of the pty. If a signal interrupts a trapped open/ioctl
request, the user’s signal handler routine has the option of specifying whether the
request is to be restarted. If the request is to be restarted, it will be executed

Hewlett—-Packard -5- July 10, 1985

PTY (4) PTY (4)

again from the begining, and the server will have to do another TIOCREQGET
to start the handshake over again. If the user’s signal handler routine specifies
that the interrupted request is not to be restarted, then the request will return to
the calling program with EINTR upon completion of the signal handler. Note
that it is not guaranteed that the restarted request will be the very next one to
be trapped.

HARDWARE DEPENDENCIES
Series 200:

The largest ioctl argument passable between master and slave sides is currently
limited to 128 bytes.

Series 500:

The largest ioctl argument passable between master and slave sides is currently
limited to 128 bytes.

The TIOCREMOTE mode is not currently implemented.

FILES
/dev/ptym/pty[parstuvw]* master pseudo terminals
/dev/pty/tty[pgrstuvw]* slave pseudo terminals
DIAGNOSTICS
None.
BUGS

It is not possible for the slave side to indicate an end-of-fle condition to the master side.

When using TIOCREMOTE, a single write to the master side of greater than 256 bytes may result
in multiple smaller records being read from the slave side instead of only one record.

SEE ALSO
termio(4), ioctl(2), select(2), signal(2).

Hewlett-Packard -6- July 10, 1985

STTYV6(4)

NAME

STTYV6(4)

stty - terminal interface for Version 6/PWB compatability
HP-UX COMPATIBILITY

Level:
Origin:

Remarks:

DESCRIPTION

HP-UX/STANDARD — Version 6 and PWB Compatability
System V

These faclilities are included to aid in conversion of old programs, and should not be
used in new code. Use the interface described in termio(4). Note that these conver—
sions do not work for programs ported from Version 7 UNIX, since some Version 7
flags are defined differently.

These routines attempt to map the Version 6 and PWB sity and gtty calls into the current ioctls
that perform the same functions. The mapping cannot be perfect. The way the features are
translated is described below. The reader should be familiar with termio(4) before studying this

page.

The following data structure is defined in the include file sgtty.h:

struct sgttyb {

char sg__ispeed; /* input speed */
char sg__ospeed; /* output speed */
char sg__erase; /* erase character */
char sg_kill; /* kill character */
int sg_flags; /* mode flags */

}

The flags, as defined in sgtty.h, are:

#define HUPCL 01

#define XTABS 02

#define LCASE 04

#define ECHO 010

#define CRMOD 020

#define RAW 040

#define ODDP 0100

#define EVENP 0200

#define ANYP 0300

#define NLDELAY 001400

#define TBDELAY 002000

#define CRDELAY 030000

#define VTDELAY 040000

#define BSDELAY 0100000

#define CRO 0

#define CR1 010000

#define CR2 020000

#define CR3 030000

#define NLO 0

#define NL1 000400

#define NL2 001000

#define NL3 001400

#define TABO 0

#define TAB1 002000

#define NOAL 004000

#define FFO 0

#define FF1 040000

Hewlett-Packard

July 10, 1985

STTYV6(4) STTYV6(4)

#tdefine BSO 0
#define BS1 0100000

When the stty(2) command (ioctl TIOCSETP) is executed, the flags in the old sgttyb structure
are mapped into their new equivalents in the termio structure. Then the TCSETA command is
executed.

The following table shows the mapping between the old sgttyb flags and the current termio
flags. Note that flags contained in the termio structure that are not mentioned below are
cleared.

HUPCL (if set)
sets the termio HUPCL flag;
HUPCL (if clear)
clears the termio HUPCL flag;
XTABS (if set)
sets the termio TAB3 flag;
XTABS (if clear)
clears the termio TAB3 flag;
TBDELAY (if set)
sets the termio TABI flag;
TBDELAY (if clear)
clears the termio TABI flag;
LCASE (if set)
sets the termio IUCLC, OLCUC, and XCASE flags;
LCASE (if clear)
clears the termio IUCLC, OLCUC, and XCASE flags;
ECHO (if set)
sets the termio ECHO flag;
ECHO (if clear)
clears the termio ECHO flag;
NOAL (if set)
clears the termio ECHOK flag;
NOAL (if clear)
sets the termio ECHOK flag;
CRMOD (if set)
sets the termio ICRNL and ONLCR flags; also, if CR1 is set, the termio CR1 flag is set,
and if CR2 is set, the termio ONOCR and CR2 flags are set;
CRMOD (if clear)
sets the termio ONLRET flag; also, if NL1 is set, the termio CR1 flag is set, and if NL2 is
set, the termio CR2 flag is set;
RAW (if set)
sets the termio CS8 flag, and clears the termio ICRNL and IUCLC flags; also, default
values of 6 characters and 0.1 seconds are assigned to MIN and TIME, respectively;
RAW (if clear) i
sets the termio BRKINT, IGNPAR, ISTRIP, IXON, IXANY, OPOST, CS7, PARENB,
ICANON, and ISIG flags; also, the default values control-D and null are assigned to the
control characters EOF and EOL, respectively;
ODDP (if set)
if EVENP is also set, clears the termio INPCK flag; otherwise, sets the termio PARODD
flag;
VTDELAY (if set)
sets the termio FFDLY flag;
VTDELAY (if clear)
clears the termio FFDLY flag;

Hewlett—Packard -2- July 10, 1985

STTYV6(4) STTYV6(4)

BSDELAY (if set)

sets the termio BSDLY flag;
BSDELAY (if clear)

clears the termio BSDLY flag.

In addition, the termio CREAD bit is set, and, if the baud rate is 110, the CSTOPB bit is set.

When using TIOCSETP, the ispeed entry in the sgttyb structure is mapped into the appropri-
ate speed in the termio CBAUD field. The erase and kill sgttyb entries are mapped into the
termio erase and kill characters.

When the gtty(2) (foctl TIOCGETP) command is executed, the termio(4) TCGETA command
is first executed. The resulting termio structure is then mapped into the sgttyb structure,
which is then returned to the user.

The following table shows how the termio flags are mapped into the old sgttyb structure. Note
that all flags contained in the sgttyb structure that are not mentioned below are cleared.

HUPCL (if set)

sets the sgttyb HUPCL flag;
HUPCL (if clear)

clears the sgttyb HUPCL flag;
ICANON (if set)

clears the sgttyb RAW flag;
ICANON (if clear)

sets the sgttyb RAW flag;
XCASE (if set)

sets the sgttyb LCASE flag;
XCASE (if clear)

clears the sgttyb LCASE flag;
ECHO (if set)

sets the sgttyb ECHO flag;
ECHO (if clear)

clears the sgttyb ECHO flag;
ECHOK (if set)

clears the sgttyb NOAL flag;
ECHOK (if clear)

sets the sgttyb NOAL flag;
PARODD (if set)

sets the sgttyb ODDP flag;
PARODD (if clear)

clears the sgttyb ODDP flag;
INPCK (if set)

sets the sgttyb EVENP flag;
PARODD, INPCK (if both clear)

sets the sgttyb ODDP and EVENP flags;
ONLCR (if set)

sets the sgttyb CRMOD flag; also, if CR1 is set, the sgttyb CR1 flag is set, and if CR2 is

set, the sgttyb CR2 flag is set;
ONLCR (if clear)

if CR1 is set, the sgttyb NL1 flag is set, and if CR2 is set, the sgttyb NL2 flag is set;
TAB3 (if set)

sets the sgttyb XTABS flag;
TABS3 (if clear)

clears the sgttyb XTABS flag;
TABI1 (if set)

sets the sgttyb TBDELAY flag;

Hewlett-Packard -3- July 10, 1985

STTYV6(4) STTYV6(4)

TABI (if clear)

clears the sgttyb TBDELAY flag;
FFDLY (if set)

sets the sgttyb VITDELAY flag;
FFDLY (if clear)

clears the sgttyb VITDELAY flag;
BSDLY (if set)

sets the sgttyb BSDELAY flag;
BSDLY (if clear)

clears the sgttyb BSDELAY flag.

When using TIOCGETP, the termio CBAUD field is mapped into the ispeed and ospeed
entries of the sgttyb structure. Also, the termio erase and kill characters are mapped into the
erase and kill sgttyb entries.

Note that, since there is not a one-to-one mapping between the sgttyb and termio structures,
unexpected results may occur when using the older TIOCSETP and TIOCGETP calls. Thus,
the TIOCSETP and TIOCGETP calls should be replaced in all future code by the current
equivalents, TCSETA and TCGETA, respectively.

SEE ALSO
termio(4), stty(2).

Hewlett—Packard -4- July 10, 1985

TERMIO (4) TERMIO (4)

NAME
termio — general terminal interface

HP-UX COMPATABILITY
Level: HP-UX/RUN ONLY

Origin: System V

DESCRIPTION
All of the asynchronous communications ports use the same general interface, no matter what
hardware is involved. The remainder of this section discusses the common features of this inter-
face.

When a terminal file is opened, it normally causes the process to wait until a connection is esta-
blished. In practice, users’ programs seldom open these files; they are opened by getty and become
a user’s standard input, output, and error files. The very first terminal file opened by the process
group leader of a terminal file not already associated with a process group becomes the control
terminal for that process group. The control terminal plays a special role in handling quit and
interrupt signals, as discussed below. The control terminal is inherited by a child process during a
fork(2). A process can break this association by changing its process group using setpgrp(2).

A terminal associated with one of these files ordinarily operates in full-duplex mode. Characters
may be typed at any time, even while output is occurring, and are only lost when the system’s
character input buffers become completely full, which is rare, or when the user has accumulated
the maximum allowed number of input characters that have not yet been read by some program.
This limit is dependent on the particular implementation, but is at least 256. When the input
limit is reached, all the saved characters are thrown away without notice.

Normally, terminal input is processed in units of lines. A line is delimited by a new-line (ASCI
LF) character, an end-of-file (ASCII EOT) character, or an end-of-line character. This means that
a program attempting to read will be suspended until an entire line has been typed. Also, no
matter how many characters are requested in the read call, at most one line will be returned. It is
not, however, necessary to read a whole line at once; any number of characters may be requested
in a read, even one, without losing information.

During input, erase and kill processing is normally done. By default, the character # erases the
last character typed, except that it will not erase beyond the beginning of the line. By default,
the character @ kills (deletes) the entire input line, and optionally outputs a new-line character.
Both these characters operate on a key-stroke basis, independently of any backspacing or tabbing
that may have been done. Both the erase and kill characters may be entered literally by preced-
ing them with the escape character (\). In this case the escape character is not read. The erase
and kill characters may be changed.

Certain characters have special functions on input. These functions and their default character
values are summarized as follows:

INTR (Rubout or ASCII DEL) generates an interrupt signal which is sent to all processes with
the associated control terminal. Normally, each such process is forced to terminate, but
arrangements may be made either to ignore the signal or to receive a trap to an
agreed-upon location; see signal(2).

QUIT (Control-| or ASCII FS) generates a quit signal. Its treatment is identical to the inter-
rupt signal except that, unless a receiving process has made other arrangements, it will
not only be terminated but a core image file (called core) will be created in the current
working directory if the implementation supports core files.

ERASE (#) erases the preceding character. It will not erase beyond the start of a line, as del-
imited by a NL, EOF, or EOL character.

KILL (@) deletes the entire line, as delimited by a NL, EOF, or EOL character.

Hewlett-Packard -1- November 15, 1985

TERMIO (4) TERMIO (4)

EOF (Control-d or ASCII EOT) may be used to generate an end-of-file from a terminal.
When received, all the characters waiting to be read are immediately passed to the pro-
gram, without waiting for a new-line, and the EOF is discarded. Thus, if there are no
characters waiting, which is to say the EOF occurred at the beginning of a line, zero
characters will be passed back, which is the standard end-of-file indication.

NL (ASCII LF) is the normal line delimiter. It can not be changed or escaped.
EOL (ASCII NUL) is an additional line delimiter, like NL. It is not normally used.

STOP (Control-s or ASCII DC3) can be used to temporarily suspend output. It is useful with
CRT terminals to prevent output from disappearing before it can be read. While output
is suspended, STOP characters are ignored and not read.

START (Control-g or ASCII DC1) is used to resume output which has been suspended by a
STOP character. While output is not suspended, START characters are ignored and not
read. The start/stop characters can not be changed or escaped.

The character values for INTR, QUIT, ERASE, KILL, EOF, and EOL may be changed to suit indivi-
dual tastes. The ERASE, KILL, and EOF characters may be escaped by a preceding \ character, in
which case no special function is done.

When a modem disconnect is detected, a hang-up signal is sent to all processes that have this ter-
minal as the control terminal. Unless other arrangements have been made, this signal causes the
processes to terminate. If the hang-up signal is ignored, any subsequent read returns with an
end-of-file indication. Thus, programs that read a terminal and test for end-of-file can terminate
appropriately when hung up on.

When one or more characters are written, they are transmitted to the terminal as soon as
previously-written characters have finished typing. Input characters are echoed by putting them
in the output queue as they arrive. If a process produces characters more rapidly than they can
be typed, it will be suspended when its output queue exceeds some limit. When the queue has
drained down to some threshold, the program is resumed.

Several 7octl(2) system calls apply to terminal files. The primary calls use the following structure,
defined in <termio.h>:

#define NCC 8

struct termio {
unsigned short c_iflag; /* input modes */
unsigned short c_oflag; /* output modes */
unsigned short c¢_cflag; /* control modes */
unsigned short c_lflag; /* local modes */
char c_line; /* line discipline */

unsigned char ¢_cc[NCC]; /* control chars */
ki
The special control characters are defined by the array c¢_cc. The relative positions and initial

values for each function are as follows:
0 VINTR DEL

1 VQUIT FS

2 VERASE #

3 VKILL Q@

4 VEOF EOT
5 VEOL NUL
6 reserved

7 reserved

The c_iflag field describes the basic terminal input control:

Hewlett-Packard -2- November 15, 1985

TERMIO (4) TERMIO (4)

IGNBRK 0000001 Ignore break condition.

BRKINT 0000002 Signal interrupt on break.

IGNPAR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.

INPCK 0000020 Enable input parity check.

ISTRIP 0000040 Strip character.

INLCR 0000100 Map NL to CR on input.

IGNCR 0000200 Ignore CR.

ICRNL 0000400 Map CR to NL on input.

1UCLC 0001000 Map upper-case to lower-case on input.
IXON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart output.
IXOFF 0010000 Enable start/stop input control.
IENQAK 0020000 Enable output pacing control.

If IGNBRK is set, the break condition (a character framing error with data all zeros) is ignored,
that is, not put on the input queue and therefore not read by any process. Otherwise if BRKINT
is set, the break condition will generate an interrupt signal and flush both the input and output
queues. If IGNPAR is set, characters with other framing and parity errors are ignored.

If PARMRK is set, a character with a framing or parity error which is not ignored is read as the
three-character sequence: 0377, 0, X, where X is the data of the character received in error. To
avoid ambiguity in this case, if ISTRIP is not set, a valid character of 0377 is read as 0377, 0377.
If PARMRK is not set, a framing or parity error which is not ignored is read as the character NUL
(0).

If INPCK is set, input parity checking is enabled. If INPCK is not set, input parity checking is dis-
abled. This allows output parity generation without input parity errors.

If ISTRIP is set, valid input characters are first stripped to 7-bits, otherwise all 8-bits are pro-
cessed.

If INLCR is set, a received NL character is translated into a CR character. If IGNCR is set, a
received CR character is ignored (not read). Otherwise if ICRNL is set, a received CR character is
translated into a NL character.

If TUCLC is set, a received upper-case alphabetic character is translated into the corresponding
lower-case character.

If IXON is set, start/stop output control is enabled. A received STOP character will suspend out-
put and a received START character will restart output. All start/stop characters are ignored and
not read. If IXANY is set, any input character, will restart output which has been suspended.

If IXOFF is set, the system will transmit START/STOP characters when the input queue is nearly
empty /full.

If IENQAK is set, the system will transmit ASCII ENQ after every 80 characters sent and then wait
until the terminal responds with ASCII ACK. The terminal will respond in this way when it has
sufficiently emptied its buffer. If the terminal does not respond after 5 seconds, the system will
resume transmission anyway. The ASCII ACK that the terminal sends will not get entered into
the input queue if it was sent in response to ASCII ENQ.

The initial input control value is all-bits-clear.
The c_oflag field specifies the system treatment of output:

OPOST 0000001 Postprocess output.

OLCUC 0000002 Map lower case to upper on output.
ONLCR 0000004 Map NL to CR-NL on output.
OCRNL 0000010 Map CR to NL on output.

ONOCR 0000020 No CR output at column 0.

Hewlett-Packard -3- November 15, 1985

TERMIO (4) TERMIO (4)

ONLRET 0000040 NL performs CR function.
OFILL 0000100 Use fill .characters for delay.
OFDEL 0000200 Fill is DEL, else NUL.
NLDLY 0000400 Select new-line delays:

NLO 0

NL1 0000400

CRDLY 0003000 Select carriage-return delays:
CRO 0

CR1 0001000

CR2 0002000

CR3 0003000

TABDLY 0014000 Select horizontal-tab delays:
TABO 0

TAB1 0004000

TAB2 0010000

TAB3 0014000 Expand tabs to spaces.
BSDLY 0020000 Select backspace delays:
BSO 0

BS1 0020000

VIDLY 0040000 Select vertical-tab delays:
VTo 0

VT1 0040000

FFDLY 0100000 Select form-feed delays:
FFo 0

FF1 0100000

If OPOST is set, output characters are post-processed as indicated by the remaining flags, other-
wise characters are transmitted without change.

If OLCUC is set, a lower-case alphabetic character is transmitted as the corresponding upper-case
character. This function is often used in conjunction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character pair. If OCRNL is set,
the CR character is transmitted as the NL character. If ONOCR is set, no CR character is
transmitted when at column 0 (first position). If ONLRET is set, the NL character is assumed to
do the carriage-return function; the column pointer will be set to 0 and the delays specified for CR
will be used. Otherwise the NL character is assumed to do just the line-feed function; the column
pointer will remain unchanged. The column pointer is also set to 0 if the CR character is actually
transmitted.

The delay bits specify how long transmission stops to allow for mechanical or other movement
when certain characters are sent to the terminal. In all cases a value of 0 indicates no delay. If
OFILL is set, fill characters will be transmitted for delay instead of a timed delay. This is useful
for high baud rate terminals which need only a minimal delay. If OFDEL is set, the fill character
is DEL, otherwise NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2 seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is set, the carriage-return delays are used
instead of the new-line delays. If OFILL is set, two fill characters will be transmitted.

Carriage-return delay type 1 is dependent on the current column position, type 2 is about 0.10
seconds, and type 3 is about 0.15 seconds. If OFILL is set, delay type 1 transmits two fill charac-
ters, and type 2, four fill characters.

Horizontal-tab delay type 1 is dependent on the current column position. Type 2 is about 0.10
seconds. Type 3 specifies that tabs are to be expanded into spaces. If OFILL is set, two fill char-
acters will be transmitted for any delay.

Hewlett-Packard -4- November 15, 1985

TERMIO (4) TERMIO (4)

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill character will be transmitted.
The actual delays depend on line speed and system load.
The initial output control value is all bits clear.
The c_cflag field describes the hardware control of the terminal:
CBAUD 0000037 Baud rate:

BO 0 Hang up
B50 0000001 50 baud
B75 0000002 75 baud
B110 0000003 110 baud
B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B900 0000011 900 baud

B1200 0000012 1200 baud
B1800 0000013 1800 baud
B2400 0000014 2400 baud
B3600 0000015 3600 baud
B4800 0000016 4800 baud
B7200 0000017 7200 baud
B9600 0000020 9600 baud
B19200 0000021 19200 baud
B38400 0000022 38400 baud

EXTA 0000036 External A
EXTB 0000037 External B
CSIZE 0000140 Character size:
CS5 0 5 bits

CS6 0000040 6 bits

CS7 0000100 7 bits

CS8 0000140 8 bits

CSTOPB 0000200 Send two stop bits, else one.

CREAD 0000400 Enable receiver.

PARENB 0001000 Parity enable.

PARODD 0002000 Odd parity, else even.

HUPCL 0004000 Hang up on last close.

CLOCAL 0010000 Local line, else dial-up.
The CBAUD bits specify the baud rate. The zero baud rate, BO, is used to hang up the connec-
tion. If BO is specified, the modem control lines (see modem(4)) will cease to be asserted. Nor-
mally, this will disconnect the line. For any particular hardware, impossible speed changes are
ignored.
The CSIZE bits specify the character size in bits for both transmission and reception. This size
does not include the parity bit, if any. If CSTOPB is set, two stop bits are used, otherwise one
stop bit. For example, at 110 baud, two stops bits are required.
If PARENB is set, parity generation and detection is enabled and a parity bit is added to each
character. If parity is enabled, the PARODD flag specifies odd parity if set, otherwise even parity
is used.
If CREAD is set, the receiver is enabled. Otherwise no characters will be received.

The specific effects of the HUPCL and CLOCAL bits depend on the mode and type of the modem
control in effect. See modem(4) for the details.

Hewlett-Packard -5- November 15, 1985

TERMIO (4) TERMIO (4)

If HUPCL is set, the modem control lines for the port will be disconnected when the last process
with the port open closes it or terminates.

If CLOCAL is set, a connection does not depend on the state of the modem status lines.

Under normal circumstances, an open will wait for the type of modem connection requested to
complete. However, if the O_NDELAY bit is specified (see open(2)) or the CLOCAL bit has been
set, the open will return immediately without waiting for the connection. For those files on which
the connection has not been established or has been lost, and for which the CLOCAL bit is not set,
both read and write will return a zero character count. For read, this is equivalent to an end-of-
file condition.

The initial hardware control value after open is B300, CS8, CREAD, HUPCL.

The c_Iflag field of the argument structure is used by the line discipline to control terminal func-
tions. The basic line discipline (0) provides the following:

ISIG 0000001 Enable signals.

ICANON 0000002 Canonical input (erase and kill processing).
XCASE 0000004 Canonical upper/lower presentation.
ECHO 0000010 Enable echo.)

ECHOE 0000020 Echo erase character as BS-SP-BS.

ECHOK 0000040 Echo NL after kill character.

ECHONL 0000100 Echo NL.

NOFLSH 0000200 Disable flush after interrupt or quit.

If ISIG is set, each input character is checked against the special control characters INTR and
QUIT. If an input character matches one of these control characters, the function associated with
that character is performed. If ISIG is not set, no checking is done. Thus these special input func-
tions are possible only if ISIG is set. These functions may be disabled individually by changing
the value of the control character to an unlikely or impossible value (e.g., 0377).

If ICANON is set, canonical processing is enabled. This enables the erase and kill edit functions,
and the assembly of input characters into lines delimited by NL, EOF, and EOL. If ICANON is not
set, read requests are satisfied directly from the input queue. A read will not be satisfied until at
least MIN characters have been received or the timeout value TIME has expired between charac-
ters. This allows fast bursts of input to be read efficiently while still allowing single character
input. The MIN and TIME values are stored in the position for the EOF and EOL characters,
respectively. The time value represents tenths of seconds.

If XCASE is set, and if ICANON is set, an upper-case letter is accepted on input by preceding it
with a \ character, and is output preceded by a \ character. In this mode, the following escape
sequences are generated on output and accepted on input:

for: use:
Y
{ \(
} \)
\ \\

For example, A is input as \a, \n as \\n, and \N as \\\n.

If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible. If ECHO and ECHOE are set, the
erase character is echoed as ASCII BS SP BS, which will clear the last character from a CRT screen.
If ECHOE is set and ECHO is not set, the erase character is echoed as ASCII SP BS. If ECHOK is
set, the NL character will be echoed after the kill character to emphasize that the line will be
deleted. Note that an escape character preceding the erase or kill character removes any special

Hewlett-Packard -6- November 15, 1985

TERMIO (4) TERMIO (4)

function. If ECHONL is set, the NL character will be echoed even if ECHO is not set. This is use-
ful for terminals set to local echo (so-called half duplex). Unless escaped, the EOF character is not
echoed. Because EOT is the default EOF character, this prevents terminals that respond to EOT
from hanging up.

If NOFLSH is set, the normal flush of the input and output queues associated with the quit and
interrupt characters will not be done.

The initial line-discipline control value is all bits clear.
The primary ‘octi(2) system calls have the form:

ioctl (fildes, command, arg)
struct termio *arg;

The commands using this form are:

TCGETA Get the parameters associated with the terminal and store in the termio
structure referenced by arg.

TCSETA Set the parameters associated with the terminal from the structure refer-
enced by arg. The change is immediate.

TCSETAW Wait for the output to drain before setting the new parameters. This form
should be used when changing parameters that will affect output.

TCSETAF Wait for the output to drain, then flush the input queue and set the new
parameters.

Additional 7octl(2) calls have the form:

ioctl (fildes, command, arg)
int arg;

The commands using this form are:

TCSBRK Wait for the output to drain. If arg is 0, then send a break (zero bits for at
least 0.25 seconds).

TCXONC Start/stop control. If arg is 0, suspend output; if 1, restart suspended out-
put.

TCFLSH If arg is 0, flush the input queue; if 1, flush the output queue; if 2, flush
both the input and output queues.

HARDWARE DEPENDENCIES
Series 200/300:
Data loss may occur with HP 98626/98644 serial interfaces if the effective combined data
rate for all installed serial interfaces exceeds 2400 baud (for example, two interfaces run-
ning at 1200 baud and a third at 300 baud is equivalent to 2700 baud combined).

The c_iflag field parameter IXANY (enable any character to restart output) is not sup-
ported by the HP 98628B interface card.

The c_iflag field parameter IENQAK (enable output pacing control) is not supported.
Timed delays are not supported.
The HP 98628B interface does not support the following baud rates: 900, 7200, 38 400.

The c¢__Iflag field parameter XCASE is not supported.

Series 500:
38400 baud is not supported by the RS-232 interface.

Hewlett-Packard -7- November 15, 1985

TERMIO (4) TERMIO (4)

European modems are not currently supported.

HP27140 Six-Channel Modem Multiplexer:
Timed output delays (as opposed to fill-character delays) are not supported.

The XCASE flag is not supported.
These baud rates are not supported: 200, 38400, EXTA, and EXTB.

HP27128 Asynchronous Serial Interface, HP27130 Eight-Channel Multiplexer:
These baud rates are not supported: 200, 38400, EXTA, and EXTB.
There is no support for tab expansion, case mapping, or output delays for control
characters.
The line kill character is always echoes as <backslash><CR><LF>, so the
ECHOK flag is not setable, and will always have the same state as the ECHO flag.
When type-ahead limit is reached, input is not flushed, but further input is sim-
ply ignored.
The PARMRK flag is not supported.
The echoing of carriage-return and new-line characters may not be quite as
expected in the more obscure driver configurations.
The echoing of the EOF character is not suppressed.
The ONLRET, ONOCR, and OCRNL flags are not supported.
The VMIN and VTIME parameters for raw terminal input are not supported.
The ECHONL flag is not supported.
When ECHOE is set and ECHO is clear, a <SP><BS> is not echoes for the erase
character.
(27130 only) The CLOCAL flag is permanently set.
(27128 only) The default setting of baud rate, bits per character, parity, and
CLOCAL bit are determined by the switches on the interface.

(27128 only) The “direct connect” cable (female connector) does not contain a
Data Carrier Detect line, so a hangup signal will be sent if the CLOCAL flag is
cleared when this cable is being used.

Model 520 Console, HP98700 Terminal, Pseudo Terminal (pty):
Since these devices do not deal with real asynchronous serial data links, the fol-
lowing flags are meaningless: IGNPAR, PARMRK, INPCK, IXOFF, IENQAK,
CBAUD, CSIZE, CSTOPB, PARENB, PARODD, HUPCL, and CLOCAL.

FILES
/dev/tty*
/dev/console
SEE ALSO
stty (1), fork(2), ioetl(2), stty(2), setpgrp(2), signal(2), tty(4), modem(4), mknod(8).

HARDWARE DEPENDENCIES
Series 200/300:
Data loss may occur with the 98626/98644 if the effective input of all 98626/98644 cards
exceeds 2400 baud.

The c_iflag field parameter IXANY (enable any character to restart output) is not sup-
ported by the HP 98628B interface card.

Hewlett-Packard -8- November 15, 1985

TERMIO (4) TERMIO (4)

The c_iflag field parameter IENQAK (enable output pacing control) is not supported.
Timed delays are not supported.
The HP 98628B interface does not support the following baud rates: 900, 7200, 38400.

The c_Iflag field parameter XCASE is not supported.

Hewlett-Packard -9- November 15, 1985

TTY (4) TTY (4)

NAME
tty - controlling terminal interface

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System V

DESCRIPTION
The file /dev/tty is, in each process, a synonym for the control terminal associated with the pro—
cess group of that process, if any. It is useful for programs or shell sequences that wish to be sure
of writing messages on the terminal no matter how output has been redirected. It can also be
used for programs that demand the name of a file for output, when typed output is desired and it
is tiresome to find out what terminal is currently in use.

FILES
/dev/tty
/dev/tty*
SEE ALSO
termio(4).

Hewlett-Packard -1- July 9, 1985

INTRO (5) INTRO(5)

NAME
intro - introduction to file formats

HP-UX COMPATIBILITY
Remarks: Header files are often used to hide hardware incompatibilities.

DESCRIPTION
This section outlines the formats of various files. The C struct declarations for the file formats
are given where applicable. Usually, these structures can be found in the directories
/usr/include or /usr/include/sys.

Hewlett—Packard -1- July 9, 1985

A.OUT(5) Series 200/300 Implementation A.OUT (5)

NAME

a.out — assembler and link editor output

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System III

Remarks: This manual page describes the a.out file format for Series 200 and 300 computers.
Refer to other e.ou#(5) manual pages for descriptions of other valid implementations.

DESCRIPTION

A.out is the output file of the link editor /d. Ld will make a.out executable if there were no link-
ing errors and no unresolved external references. The assembler as produces non-executable files
with the same structure.

File a.out has seven sections: a header, the program text and data segments, a pascal interface
section, a symbol table, information for debugger support, and text and data relocation informa-
tion (in that order). The pascal interface text will only be present in those pascal code segments
that have not been linked. The last three sections may be missing if the program was linked with
the —s option of Id(1) or if the symbol table, debug information, and relocation bits were removed
by strip(1). Also note that if there were no unresolved external references after linking, the relo-
cation information will be removed.

The file section containing information for debugger support has three tables—the debug name
table (DNTT), the source line table (SLT), and the value table (VT). These tables contain sym-
bolic information used by the HP-UX debugger cdb(1). HP-UX compilers create this information
under control of the —g option.

When an a.out file is loaded into memory for execution, three logical segments are set up: the
text segment, the data segment (initialized data followed by uninitialized, the latter actually being
initialized to all 0’s), and a stack. The text segment begins at location 0x0 in the core image; the
header is not loaded. If the magic number (the first field in the header) is EXEC_MAGIC, it indi-
cates that the text segment is not to be write-protected or shared, so the data segment will be
contiguous with the text segment. If the magic number is SHARE_MAGIC or DEMAND_MAGIC,
the data segment begins at the first 0 mod 0x1000 byte boundary following the text segment, and
the text segment is not writable by the program; if other processes are executing the same a.out
file, they will share a single text segment. If the magic number is DEMAND_MAGIC, the text and
data segments are not read in from the file until they are referenced by the program.

The stack will occupy the highest possible locations in the core image and grow downward (the
stack is automatically extended as required). The data segment is only extended as requested by
the brk(2) system call.

The start of the text segment in the a.out file is given by the macro TEXT__OFFSET(hdr), where
hdr is a copy of the file header. The macro DATA_OFFSET(hdr) provides the starting location of
the data segment.

The value of a word in the text or data portions that is not a reference to an undefined external
symbol is exactly the value that will appear in memory when the file is executed. If a word in the
text or data portion involves a reference to an undefined external symbol, as indicated by the relo-
cation information (discussed below) for that word, then the value of the word as stored in the file
is an offset from the associated external symbol. When the file is processed by the link editor and
the external symbol becomes defined, the value of the symbol will be added to the word in the file.

Hewlett-Packard -1- November 15, 1985

A.OUT(5)

Header

Series 200/300 Implementation

A.OUT(5)

The format of the a.out header for the MC68000 is as follows (segment sizes are in bytes):

struct exec {

MAGIC a_magic;
short a_stamp;
short a__unused;
long a_sparehp;
long a__text;
long a_data;
long a_bss;
long a__trsize;
long a_drsize;
long a__pasint;
long a_lesyms;
long a__dnttsize;
long a_entry;
long a_sltsize;
long a_vtsize;
long a_spare3;
long a_spared;

h

Pascal Interface Section

/* magic number */
/* version stamp */

/* size of text segment */

/* size of data segment */

/* size of bss segment */

/* size of text relocation info */
/* size of data relocation info */
/* size of interface text x/

/* size of symbol table */

/* debug name table size */

/* entry point of program x/
/* source-line table size x/

/* value table size */

The Pascal interface section consists of the ascii representation of the interface text for that Pas-

cal module.

The start of the Pascal interface section is given by the macro MODCAL_OFFSET (hdr).

Symbol Table

The symbol table consists of entries of the form:

struct nlist {
long
unsigned char
unsigned char
short
short

b

n__value;
n_type;
n_length;
n__almod;
n__unused;

Following this structure is n__length ascii characters which compose the symbol name.

The n__type field indicates the type of the symbol; the following values are possible:

00 undefined symbol

01 absolute symbol

02 text segment symbol
03 data segment symbol
04 bss segment symbol

One of these values ANDed with 040 indicates an external symbol. One of these values ANDed

with 020 indicates an aligned symbol.

The start of the symbol table is given by the macro LESYM_OFFSET (hdr).

Hewlett-Packard

November 15, 1985

A.OUT(5) Series 200/300 Implementation A.OUT (5)

Relocation
If relocation information is present, it amounts to eight bytes per relocatable datum.

The format of the relocation data is:

struct r_info {
long r_address;
short r—symbolnum;
char r_segment;
char r_length;

b

The r_address field indicates the position of the relocation within the segment.

The r__segment field indicates the segment referred to by the text or data word associated with
the relocation word:

00 indicates the reference is to the text segment;

01 indicates the reference is to initialized data;

02 indicates the reference is to bss (uninitialized data);

03 indicates the reference is to an undefined external symbol.
The field r_symbolnum contains a symbol number in the case of external references, and is
unused otherwise. The first symbol is numbered 0, the second 1, etc.

The field r_length indicates the length of the datum to be relocated.

00 indicates it is a byte
01 indicates it is a short
02 indicates it is a long
03 indicates it is a special align symbol

The start of the text relocation section is provided by the macro RTEXT_OFFSET (hdr).
The start of the data relocation section is provided by the macro RDATA_OFFSET (hdr).

SEE ALSO
as(1), 1d(1), nm(1), strip(1), magic(5).

Hewlett-Packard -3- November 15, 1985

A.OUT(5) Series 500 Implementation A.OUT(5)

NAME
a.out - executable linker output file

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: HP
Remarks: This manual entry describes the a.out file format for the Series 500. Refer to other
a.out manual pages for information valid for other implementations.

DESCRIPTION
A.out is the output file of the linker /d(1). Ld will make a.out executable if there are no errors
during compilation and linking, and no unresolved external references.

This file has five sections - a file header, a segment table, a segment information section, a symbol
table(s) section, and a name pool(s) section. It looks as follows:

File Header
Segment Table

Segment Information
— segment image (code/data)
— fix-up information (loader)
— relocation information (Id)

Symbol Tables:

— linker symbol table
— information for debugger
support

Name Pool (strings)

Note that the above pictorial representation represents the logical order of the file, not necessarily
the physical order. A description of each section of the file follows.

File Header
The a.out file header is conceptually divided into two pieces. The first is a section of “scalar”
values, and the second is a “file map” containing data pertaining to the rest of the file. The entire
file header is made up of 128 bytes of information, 32 of which make up the scalar section. The
following is a pictorial representation of the scalar section:

Byte
0 SystemID : File Type

Reserved for Future Use
8 Flags
12 Program Entry Point

16 Version Stamp
20 Memory Offset
24 Working Set Guarantee

28 Reserved for Future Use

Hewlett—Packard -1- July 10, 1985

A.OUT(5) Series 500 Implementation A.OUT(5)

Each horizontal “slice” represents a word made up of four eight-bit bytes. The first word is
called the “magic number”, which is made up of two half-words called the system ID and the file
type. The system ID identifies the target machine upon which the object code will run. The file
type specifies whether or not the file is executable (hex 107), shareable (hex 108), or relocatable
(hex 106).

The third word is used to specify the settings of three flags. The left-most three bits of this word
are significant; the remainder of the word is ignored. Bit 1, the left-most of the flag bits, marks
the program as using a single data segment, if set. You can override this with the -T or -A Id
options, which force the program to reside in one or two data segments, respectively. Bit 2 marks
the file as relinkable, if set (meaning that the file contains relocation records and a symbol table).
Bit 3 marks the file as debuggable, if set.

The Program Entry Point word contains an external program pointer (EPP) referencing the
starting code for the program. Ld normally assigns the starting address of the main program to
this word. This can be changed with the -e linker option.

The Version Stamp is a user—supplied 32-bit integer which is used to distinguish one version of an
application program from another. The user can specify this integer using the -V Id(1) option at
link time.

The file map portion of the header looks as follows:

Byte Byte
32 Code Segment Tbl: offset 80 VT: offset
36 Code Segment Tbl: size 84 VT: Size
40 Code SegImages: offset 88 SLT: offset
44 Code Seg Images: size 92 SLT: size
48 Data Segment Tbl: offset 96 Name Pool: offset
52 Data Segment Tbl: size 100 Name Pool: size
56 Data Seg Images: offset 104 Interface Info: offset
60 Data Seg Images: size 108 Interface Infor: size
64 Link Symbol Tbl: offset 112 Reserved for Future Use
68 Link Symbol Tbl: size 116 Reserved for Future Use
72 DNTT: offset 120 Reserved for Future Use
76 DNTT: Size 124 Reserved for Future Use

Hewlett-Packard -2- July 10, 1985

A.OUT(5) Series 500 Implementation A.OUT(5)

Each offset entry in the file map shows where the given section starts, relative to the beginning of
the a.out file. Each size entry gives the size, in bytes, for that section.

Segment Table
The segment table collects, in one place, all information about the code and data segments making
up the program. The segment table consists of an array of entries. Each entry describes one code
or data segment of the program.

The following information is given for both code and data segment table entries:

a segment name, which consists of an offset into the name pool, relative to the beginning
of the name pool. This is useful for symbolically referring to code or data segments (not
currently implemented).

a segment type, which specifies one of three possible types of segments - code, direct data
(in GDS), or indirect data (in GDS or EDS).

a list of segment attributes. The segments can be paged, virtual, demand loadable, writ—
able, and privileged. The linker sets the attributes for executable files.

a segment offset, which references a particular code or data segment within the segment
image area. The reference is given relative to the beginning of the segment image area.

a segment size, which is the size, in bytes, of the particular code or data segment being
described in the entry.

a segment fizup size, which specifies the size, in bytes, of the loader fixup area in the par—
ticular segment being described.

a segment relocation information size, which specifies the number of bytes of relocation
records for this segment.

The following information is given for data segment table entries only:

a segment limit, which specifies the maximum number of bytes that the indirect data seg—
ment can contain. Attempting to increase the size beyond this stated limit results in an
error. The linker assigns a default value of 1.5 megabytes to this field, but it may be
changed with the -m chatr(1) option.

a segment zero-padding size, which is a byte count of the uninitialized data area. The
linker computes this value from the data relocation records.

The following information is given for code segment table entries only:

a segment local procedures count, which specifies the number of procedures defined in that
segment, but only known locally within it.

a segment external procedures count, which specifies the number of procedures defined in
that segment, but externally known.

Several words are left unused in each segment table entry to allow for future growth.

Segment Information
This section of the file contains the segment images for each segment included in the final, execut—
able file. This section contains a subsection for each program segment. Each subsection is in turn
made up of three parts - the contents of the segment (code or data), a list of pointers that the
loader must “fix up” in that segment, and the relocation records for that segment. Each subsec—
tion looks as follows:

Code/Data Image

Loader Initialization. Information

Loader Fixup Information

Relocation Records

Hewlett—-Packard -3- July 10, 1985

A.OUT(5) Series 500 Implementation A.OUT(5)

The code image contains the compiled machine code for each program segment. The data image
contains an image of initialized data for the program. Contained in this code are pointers. The
loader fixup information area contains offsets that reference these pointers (the offsets are given
relative to the beginning of the code/data image area). These offsets must be "fixed up” at run
time (i.e., the program loader ezec must update the segment number fields with the correct
values). The linker generates the loader fixup information.

Symbol Tables
The linker symbol table contains data on relocatable symbols relevant to the linker (e.g. name and
type for each global symbol). Refer to nm(1) (Series 500 only) for a complete description of each
symbol type and the parameters associated with them. The contents of the symbol table may be
listed in several different ways with nm.

Name Pool
The name pool contains a list of null-terminated strings, which specify the names of the symbols
in the program. The symbol table entries contain indexes into the name pool instead of the
names themselves. This permits arbitrarily long names to be used instead of fixed-length names.
The first string in the name pool is always a null string. This enables zero to be used as an index
into the name pool for entities which have no names.

SEE ALSO
chatr(1), 1d(1), nm(1), strip(1), magic(5).

Hewlett-Packard -4- July 10, 1985

ACCT (5)

NAME
acct — per-process accounting file format

HP-UX COMPATIBILITY
Level: HP-UX/EXTENDED
Origin: System V

SYNOPSIS
#include <sys/acct.h>

HP-UX COMPATIBILITY

Level: HP-UX/EXTENDED
Origin: System V
DESCRIPTION

ACCT(5)

Files produced as a result of calling acct(2) have records in the form defined by <sys/acct.h>,

whose contents are:

typedef ushort comp_t;

struct acct

{
char ac_flag;
char ac_stat;
ushort ac_uid;
ushort ac_gid;
dev_t ac_tty;
time_t ac__btime;
comp—t ac_utime;
comp_t ac_stime;
comp_t ac_etime;
comp_t ac_mem;
comp_t ac_io;
comp_t ac_rw;
char ac_comm|8];

J&

#tdefine AFORK 01

#define ASU 02

#define ACCTF 0300

/* "floating point” */
/* 13-bit fraction, 3-bit exponent */

/* Accounting flag */

/* Exit status */

/* Accounting user ID */

/* Accounting group ID x/

/* control typewriter */

/* Beginning time */

/* acctng user time in clock ticks */
/* acctng system time in clock ticks %/
/* acctng elapsed time in clock ticks %/
/* memory usage in clicks %/

/* chars trnsfrd by read/write */

/* number of block reads/writes %/

/* command name */

/# has executed fork, but no exec */
/* used super-user privileges %/
/* record type: 00 = acct %/

In ac_flag, the AFORK flag is turned on by each fork(2) and turned off by an ezec(2). The
ac_comm field is inherited from the parent process and is reset by any ezec. Each time the sys-
tem charges the process with a clock tick, it also adds to ac_mem the current process size, com-

puted as follows:

(data size) + (text size) / (number of in-core processes using text) +
sum of ((shared memory segment size) / (number of in-core processes attached to seg-

ment))

The value of ac_mem / (ac_stime + ac_utime) can be viewed as an approximation to the mean

process size, as modified by text-sharing.

Hewlett-Packard

-1- November 15, 1985

ACCT(5) ACCT(5)

The structure tacct.h, which resides with the source files of the accounting commands, represents
the total accounting format used by the various accounting commands:

/%
* total accounting (for acct period), also for day
*/
struct tacct {
uid_t ta_uid; /* userid */
char ta_name[8]; /* login name */
float ta_cpu(2]; /* cum. cpu time, p/np (mins) %/
float ta_kcore[2]; /# cum kcore-minutes, p/np */
float ta_con[2]; /* cum. connect time, p/np, mins */
float ta_du; /* cum. disk usage */
long ta_pc; /* count of processes */
unsigned short ta_sc; /* count of login sessions */
unsigned short ta_dc; /* count of disk samples */
short ta_fee; /* fee for special services */
b
HARDWARE DEPENDENCIES
Series 500:

ac_mem includes only certain resident segments still held by a process when it ter-
minates. Because ac__mem does not account for shared or virtual memory, or for changes
in the amount of memory allocated dynamically, ac_mem / (ac_stime + ac_utime) may
not always furnish a good approximation of memory usage.

SEE ALSO
acct(2), exec(2), fork(2).
acct(1M), and acctcom(1) in the HP-UX Reference.

BUGS
The ac_mem value for a short-lived command gives little information about the actual size of the
command, because ac_mem may be incremented while a different command (e.g., the shell) is
being executed by the process.

Hewlett-Packard -2- November 15, 1985

AR(5) AR(5)

NAME
ar - common archive file format
SYNOPSIS
#include <ar.h>
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: =~ System V

DESCRIPTION
Ar(1) is used to concatenate several files into an archival file. Archives are used mainly as
libraries to be searched by the link editor 1d(1).

Each archive begins with the archive magic string.

#define ARMAG “!<arch>\n" /* magic string */
#define SARMAG 8 /* length of magic string +/

Each archive which contains object files (see a.out(5)) includes an archive symbol table. This
symbol table is used by the link editor /d(1) to determine which archive members must be loaded
during the link edit process. The archive symbol table (if it exists) is always the first file in the
archive (but is never listed) and is automatically created and/or updated by ar.

Following the archive magic string are the archive file members. Each file member is preceded by
a file member header which is of the following format:

#define ARFMAG “‘\n” /* header trailer string */

struct ar_hdr /* file member header */

{
char ar_name[16]; /* [’ terminated file member name %/
char ar_date[12]; /* file member date */
char ar_uid[6]; ' /#* file member user identification */
char ar_gid[6]; /* file member group identification */
char ar_mode[8]; /* file member mode (octal) %/
char ar_size[10]; /* file member size %/
char ar_fmag|2]; /* header trailer string */

b

All information in the file member headers is in printable ASCII. The numeric information con—
tained in the headers is stored as decimal numbers (except for ar_mode which is in octal). Thus,
if the archive contains printable files, the archive itself is printable.

The ar_name field is blank-padded and slash (/) terminated. The ar_date field is the
modification date of the file at the time of its insertion into the archive. Common format archives
can be moved from system to system as long as the portable archive command ar(1) is used.
Note that older versions or ar(1) did not use the common archive format, and those archives can—
not be read or written by the common archiver. The conversion tool arcv(1) is provided for
changing non-common format archives to this format.

Each archive file member begins on an even byte boundary; a newline is inserted between files if
necessary. Nevertheless the size given reflects the actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

If the archive symbol table exists, the first file in the archive has a zero length name (i.e.,
ar_name[0] == ’/’). The contents of this archive member are machine dependent. Further

Hewlett-Packard -1- July 9, 1985

AR(5) AR(5)

details can be found in the ranlib(5) manual page.
SEE ALSO
ar(1), arcv(1), 1d(1), strip(1), ranlib(5).

WARNING
Strip(1) will remove all archive symbol entries from the header. The archive symbol entries must
be restored via the ts option of the ar(1) command before the archive can be used with the link
editor ld(1).

Hewlett-Packard -2~ July 9, 1985

BIF (5)

NAME

BIF (5)

BIF - Bell Interchange Format utilities

HP-UX COMPATIBILITY

Level: Bell System III - HP-UX/NUCLEUS
Origin: HP

DESCRIPTION

BIF (Bell Interchange Format) is the name given to the format of mounted media used by HP-
UX series 200 revisions 2.0 and 2.1. This format is based upon that used in System III Unix.

These utilities are provided for reading and writing data to and from BIF volumes. These utilities
(referred to hereafter as bif¥(1)) may be used to retrieve and store information on a BIF volume.

The bif¢(1) utilities are the only utilities within HP-UX where the internal contents of a BIF
volume are known. To the rest of HP-UX a BIF volume is simply a file/disk containing some
unspecified data. You must not use mount(1) on a BIF volume, since the operating system does
not recognize it.

BIF file names are specified to the bif«(1) utilities by concatenating the HP-UX path name for the
BIF volume with the BIF file name, separating the two with a colon (:). For example,

/dev/fd.0: /users/ivy specifies BIF file /users/ivy within HP-UX device special file
/dev/fd.0.

Note that this file naming convention is applicable only for use as arguments to the bif«(1) utili-
ties and does not constitute a legal path name for any other use within HP-UX. The shell sh(1)
“meta” characters: * ? and [...] do not work for specifying an arbitrary pattern for file name
matching when using the BIF utilities.

If the device name and a trailing colon are specified without a file or directory name following (e.g.
/dev/rfd.0:), then the root (/) of the BIF file system is assumed by convention.

A primitive form of data protection is provided by a lockfile /tmp/BIF..LCK that only allows one
process and it’s immediate children to use the bif utilities at a time.

SEE ALSO

bifchmod(1), bifchown(1), bifep(1), bifdf(1), biffind(1), biffsck(1), biffsdb(1), bifis(1), bifmkdir(1),
bifmkfs(1), bifrm(1).

Hewlett-Packard -1- July 9, 1985

CHECKLIST(5) CHECKLIST (5)

NAME

checklist - static information about the file systems.

SYNOPSIS

#include <checklist.h>

HP-UX COMPATIBILITY

Level: Large Machine/HP Extension
Origin: HP, System V and UCB

DESCRIPTION

Checklist is an ASCII file and resides in directory /etc. It is only read by programs, and not writ—
ten; it is the duty of the system administrator to properly create and maintain this file.
/etc/checklist contains a list of mountable file system entries. The fields within each entry of a
file system are separated by one or more blanks. Each file system entry is contained on a separate
line. The order of entries in /etc/checklist is important because fsck, mount, and umount sequen—
tially iterate through /etc/checklist.

Each file system entry must contain a special file name and may additionally contain all of the
following fields, in order:

block special file name

directory

type

pass number on parallel fsck

backup frequency

comment

These additional fields are ignored in an HP-UX system if the set of system administration tools
implemented on that system does not support them.

The special file name is either a character or block special file name. This field is used by
the fsck(1M) command.

The block special file name is used by the mount(1M) and other commands.

The directory is the name of the root of the mounted file system which corresponds to the block
special file name. The directory must already exist and must be given as an absolute path name.

" ow_n n

Type can be “rw”, “ro”, "sw” or “xx”. If type is “rw” or “ro” then the file system whose name is
given in the block special file field is mounted read-write or read-only on the specified directory
by mount —a. If type is “sw” then the special file name is made available as a piece of swap
space by the swapon(1M) command. The fields pass number and backup frequency are ignored for
“sw” entries. Entries marked "xx” are ignored by all commands and can be used to mark unused
sections. If type is specified as either “xx” or "sw” the entry is ignored by the mount(1M) com—
mand.

The pass number field is used by the fsck(1M) command to determine the order in which file sys—
tem checks are done when using the —p option of fsck. The root file system should be specified
with a pass number of 1, and other file systems should have larger numbers. File systems within
a drive should have distinct numbers, but file systems on different drives can be checked on the
same pass to utilize possible parallelism available in the hardware. A file system with a pass
number of zero will be ignored by the fsck(1M) command. If a pass number is not present, fsck
will check each such file system sequentially after all eligible file systems with pass numbers have
been checked.

The backup frequency field is reserved for possible use by future backup utilities.

The comment field is an optional field which starts with a pound sign (#) and ends with a new—
line. Space from the backup frequency up to the comment field, if present, or the newline is
reserved for future use.

Hewlett-Packard -1- July 9, 1985

CHECKLIST (5) CHECKLIST (5)

Examples of file system entries specified in /etc/checklist:

Tor system which supports only special file name field:
/dev/rdsk/0s0

Tor system which supports multi-fields:
/dev/rdsk/0s0 /dev/dsk/0sO / rw 1 O #root disc

HARDWARE DEPENDENCIES
Series 500:
All of the optional fields in a file system entry will be ignored.

Series 200 and 300
There is no limit to the number of special file names in /etc/checklist. However, the com—
mands mount -a and umount -a give an error if the number of mountable file system
entries in /etc/checklist exceeds NMOUNT.

SEE ALSO
fsck(1M), getfsent(3X), mount(1M), swapon(1M).

Hewlett—Packard -2 - July 9, 1985

COL_SEQ_38(5) COL_SEQ_8(5)

NAME

col_seq—8 — Collating sequence table for languages with 8-bit character sets

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: HP

Native Language Support:
8-bit data, customs

DESCRIPTION

There are four language dependent collation algorithms for European languages. These algorithms
are:

2-to—1 Conversions: Some languages, like Spanish, require two adjacent characters to occupy
one position in the collating sequence. Examples are “CH” (which follows “C”) and “LL” (which
follows "L").

1-to—2 Conversions: Some languages, like German, require one character (e.g. “sharp S”) to
occupy two adjacent positions in the collating sequence.

Don’t care Characters: Some languages designate certain characters to be ignored in character
comparisons. For example, if "~ is a “Don’t Care” character, then the strings "REACT” and
“"RE-ACT"” would equal each other when compared.

Case and Accent Priority: Many languages require a “two pass” collating algorithm: in pass
one, the accents are stripped off the letters and the resulting two strings are compared; if they are
equal, a second pass with the accents back in place is performed to break the tie. The case of
letters may also be used in this fashion.

This table has four sections — a file header, a sequence table, a 2-to—1 mapping table and a 1-to-2
mapping table.

Header
Sequence Table
2-to—1 Mapping Table
1-to—2 Mapping Table

Length and pointers are in units of two bytes.
Header:

Byte 0 | Byte 1
Table Length
Language Id Number
Reserved
Pointer to Sequence Table
Length of Sequence Table
Pointer to 2-to-1 Mapping Table
Length of 2-to-1 Mapping Table
Pointer to 1-to-2 Mapping Table
Length of 1-to-2 Mapping Table
Lowest Char | Highest Char
Reserved

DO = bt e e
SO RO X®EENDO

Hewlett—Packard -1- July 11, 1985

COL_SEQ_8(5) COL_SEQ_8(5)

Sequence Table:

Sequence Entry 0
Sequence Entry 1
(other entries from 2-254)
Sequence Entry 255

The byte value of a character is used as an index into the sequence table.

Sequence Entry Format: Each entry in the sequence table above uses two bytes and has one of
the following formats:

First Byte Second Byte Format Type
Bits: 15-8 7-6 | 5-4-3-2-1-0
0 00 0 don’t-care characters
sequence no. | 00 priority all 1-to-1 mapped characters w/o priority
sequence no. | 01 index 2-to-1 mapped characters
seq # (l.ch) 10 index 1-to—2 mapped characters

The 6-bit index indexes into either the 2-to-1 or the 1-to—2 mapping table.
Mapping Table for 2-to—1 Mapped Characters

2-to—1 Mapping Table
Entry Pointer 1
Entry Pointer 2

(other entry pointers)
Entry Pointer n

Sequence Entry Format for Mapped Pairs
Byte 0 Byte 1
0 Legal Char 1
Sequence Entry for this Pair
(other mapped pair entries)

0 | Legal Char n
Sequence Entry for This Pair
Sentinel: -1

0 I | priority

The “legal” 2-to-1 characters are listed for each particular character. “Legal” means that the
combination of two characters is treated as a single character. If a match is found, then the
corresponding sequence entry is used for the two. Whenever a legal successor is not found in the
table, the character is treated according to 1-to-1 mapping, and the priority in the last entry,
combined with sequence number of the character, creates the sequence entry.

Hewlett—-Packard -2- July 11, 1985

COL_SEQ_8(5) COL_SEQ_8(5)

Mapping Table for 1-to—2 Mapped Characters

1-to—2 Mapping Table
Sequence Entry
Sequence Entry

(other sequence entries)
Sequence Entry

Entries in the 1-to—-2 mapping table have the same format as entries in the sequence table. The
sequence number of the first character is known from the entry in the sequence table. The
sequence number of the second character is found in the 1-t0o—2 mapping entry, and the priority is
used for both characters.

SEE ALSO
sort(1), nl_string(3C).

Hewlett-Packard -3- July 11, 1985

CORE(5) Series 500 Only CORE (5)

NAME
core — format of core image file

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD - Assembly option

Origin: System III
DESCRIPTION

The HP-UX system writes out a core image of a terminated process when any of various errors
occur. See signal(2) for the list of reasons; the most common are memory violations, illegal
instructions, floating point exceptions, and user-generated quit signals. The core image is called
core and is written in the process’s working directory (provided it can be; normal access controls
apply). A process with an effective user ID different from the real user ID will not produce a core
image.

The first section of the core image is a header which contains information about the terminated
process. The remainder represents the actual contents of the user’s core area when the core image
was written. This area contains the stack, user global data, and heap segments. The last object in
the core image is the code segment fixup map which maps user code segments into real addresses.
The format of the information in the first section is described by the user structure of the system,
defined in <sys/user.h>.

SEE ALSO
cdb(1), setuid(2), signal(2).

Hewlett-Packard -1- August 12, 1986

CPIO(5) CPIO(5)

NAME

cpio - format of cpio archive

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V
Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION

The header structure, when the -c option of ¢pio(1) is not used, is:

struct {
short h__magic,
h__dev;
ushort h_ino,
h_mode,
h_uid,
h_gid;
short h_nlink,
h_rdev,
h_mtime(2],
h__namesize,
h_filesize[2];
char h_name[h_namesize rounded to word];
} Hdr;

When the -c option is used, the header information is described by:

sscanf(Chdr,” %6ho%6ho%6h0%6h0%6h0%6h0%6h0%6h0%1110%6ho%11l0”,
&Hdr.h_magic,&Hdr.h__dev,&Hdr.h__ino,&Hdr.h_mode,
&Hdr.h_uid,&Hdr.h_gid,&Hdr.h_nlink,&Hdr.h_rdev,
&Longtime,&Hdr.h _namesize,&Longfile);

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize, respectively. The
contents of each file is recorded together with other items describing the file. Every instance of
h_magic contains the constant 070707 (octal). The items h_dev through h_mtime have mean—
ings explained in stat(2). The length of the null-terminated path name h_name, including the
null byte, is given by h_namesize.

The last record of the archive always contains the name TRAILER!!. Directories and the trailer
are recorded with h__filesize equal to zero.

It will not always be the case that h_dev and h_ino correspond to the results of stat(2), but the
values are always sufficient to tell whether two files in the archive are linked to each other.

When a device special file is archived by HP-UX cpio (using —x), h_rdev will contain a magic
constant which is dependent upon the implementation which is doing the writing. H__rdev flags
the device file as an HP-UX 32-bit device specifier, and h_filesize will contain the 32-bit device
specifier (see stat(2)).

Special files are not restored, and cpio(1) generates a warning, if either h_filesize is zero, h_rdev
is non-zero, or the identifying information is not that for the restoring system. If the —x option is
not present, special files are not archived or restored. Non-HP-UX device special files are never
restored.

SEE ALSO

cpio(1), find(1), stat(2).

Hewlett—Packard -1- July 9, 1985

DIALUPS(5) DIALUPS(5)

NAME

dialups, d_passwd - dialup security control

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: Capability from System V, page by HP.

DESCRIPTION

FILES

Dialups and d_passwd are used to control the dialup security feature of login(1). If /etc/dialups
is present, the first word on each line is compared with the name of the line upon which the login
is being performed. (Including the /dev/, as returned by ttyname(3)). If the login is occurring
on a line found in dialups, dialup security is invoked. Anything after a space or tab is ignored.

When dialup security is invoked, login(1) will request an additional password, and check it
against that found in /etc/d_passwd. The command name found in the “program to use as
Shell” field of /etc/passwd is used to select the password to be used. Each entry in d_passwd
consists of three fields, separated by colons. The first is the command name, matching an entry in
passwd. The second is the encrypted password to be used for dialup security for those users log-
ging in to use that program. The third is commentary, but the second colon is required to delimit
the end of the password. A null password is designated with two adjacent colons. The entry for
/bin/sh is used if no other entry matches the command name taken from passwd.

/ete/dialups Dial in tty lines
/ete/d_passwd Passwords

SEE ALSO

login(1), passwd(5).

Hewlett-Packard -1- November 15, 1985

DIR(5) Series 200 Implementation DIR(5)

NAME
dir - format of directories

SYNOPSIS
#include <types.h>
#include <sys/dir.h>
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: UCB and HP
Remarks: This entry describes the directory format for the HFS file system. Refer to other
dir(5) manual pages for information valid for other implementations.

DESCRIPTION
A directory behaves exactly like an ordinary file, except that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry (see
f3(5)). The structure of a directory entry as given in the dir.h include file is:
#define DIRSIZ 14
#define DIR_PADSIZE 10

struct direct {

u_long d_ino; /* inode number of entry */

u_short d_reclen; /* length of this record */

u_short d_namlen; /* length of string in d_name */

char d_name[DIRSIZ]; /* name must be no longer than this */
char d_pad[DIR_PADSIZE];

%
By convention, the first two entries in each directory are for . and .. ("dot” and “dot dot”). The
first is an entry for the directory itself. The second is for the parent directory. The meaning of ..

is modified for the root directory of the master file system; there is no parent, so .. and . have
the same meaning.

The direct structure defined here is the actual directory format for the HFS file system and is not
compatible with other HP-UX supported file systems. The direct structure defined in
/usr/include/ndir.h should be used in conjunction with the directory(3C) library routines for
compatibility across all HP-UX supported file systems.

SEE ALSO
fs(5), directory(3C).

Hewlett-Packard -1- July 10, 1985

DIR(5) Series 500 Implementation DIR (5)

NAME
dir - format of directories
SYNOPSIS
#include <types.h>
#include <sys/dir.h>
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: HP
Remarks: This entry describes the SDF directory format for Series 500. Refer to other dir(5)
manual pages for information valid for other implementations.
DESCRIPTION
A directory behaves exactly like an ordinary file, except that no user may write into a directory.

The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry (see
inode(5)). The structure of a directory entry as given in sys/dir.h is:

#ifndef DIRSIZ

#define DIRSIZ 14

#endif

struct direct

{
char d_name[DIRSIZ+2]; /# 16—char file name %/
short d__object_type; /* not referenced by HP-UX =/
short d_file__code; /* not referenced by HP-UX */
ino_t d_ino; /* use fir # for i-node */

h

The SDF directory implementation eliminates entries for . and ... Instead, this information is
available as part of the i-node.

File names are stored in directories in a special manner in two cases:
When a file name contains embedded blanks, the blanks are represented by null char—
acters on the disc. This is apparent when accessing the disc in raw (character) mode.

When a file name is blank padded, all unspecified characters are set to blanks. Again,
this is apparent only when reading from the disc in raw mode.

When a director has been opened vi open(2), file names appear as null-terminated, and contain
embedded blanks where they belong.

The direct structure defined here is the actual directory format for the SDF file system, and is not
compatible with other file systems supported on HP-UX. The direct structure defined in
/usr/include/ndir.h should be used in conjunction with the directory(3C) library routines for
compatibility across all HP-UX supported file systems.

SEE ALSO
fs(5), inode(5), directory(3C).

Hewlett-Packard -1- July 10, 1985

DIR(5) Integral PC Implementation

NAME
dir - format of directories
SYNOPSIS
#include <types.h>
#include <sys/dir.h>

HP-UX COMPATIBILITY

DIR (5)

Level:
Origin:

HP-UX/STANDARD
System IIT

Remarks: This entry describes the directory format for the Bell file system. Refer to other dir(5)

manual pages for information valid for other implementations.

DESCRIPTION

A directory behaves exactly like an ordinary file, except that no user may write into a directory.
The fact that a file is a directory is indicated by a bit in the flag word of its i-node entry (see

f3(5)). The structure of a directory entry as given in the dir.h include file is:

#tifndef DIRSIZ
#define DIRSIZ 14
#endif
struct direct
{
ino_t d__ino;
char d__name[DIRSIZ];
b

By convention, the first two entries in each directory are for . and .. ("dot” and "dot dot”). The
first is an entry for the directory itself. The second is for the parent directory. The meaning of ..
is modified for the root directory of the master file system; there is no parent, so .. and . have

the same meaning.

The direct structure defined here is the actual directory format for the Bell file system and is not

compatible with other HP-UX supported file systems.

The direct structure defined in

Jusr/include/ndir.h should be used in conjunction with the directory(3C) library routines for

compatibility across all HP-UX supported file systems.

SEE ALSO
fs(5), directory(3C).

Hewlett—Packard -1-

July 10, 1985

DISKTAB(5) (HFS Implementation)

NAME
disktab - disc description file

SYNOPSIS
#include <disktab.h>

HP-UX COMPATIBILITY
Level: Large Machine/HP Extension/HFS

Origin: HP and UCB
DESCRIPTION

DISKTAB (5)

Disktab is a simple data base which describes disc geometries and disc section characteristics.
Entries in disktab consist of a number of ‘:’ separated fields. The first entry for each disc gives the
names which are known for the disc, separated by ‘|’ characters. The last name given should be a

long name fully identifying the disc.

The following list indicates the normal values stored for each disc entry. Sectors are of size

DEV_BSIZE, defined in <sys/param.h> on your system.

Name Type Description

ns num Number of sectors per track
nt num Number of tracks per cylinder
nc num Total number of cylinders on the disc

b0 num Block size for section ‘0’ (bytes)
bl num Block size for section ‘1’ (bytes)
b<n> num Block size for section ‘<n>’ (bytes)

fo num Fragment size for section ‘0’ (bytes)

f1 num Fragment size for section ‘1’ (bytes)
f<n> num Fragment size for section ‘<n>’ (bytes)
s0 num Size of section ‘0’ in sectors

sl num Size of section ‘1’ in sectors

s<n> num Size of section ‘<n>’ in sectors
rm num Revolution per minute

ty str Type of disc (e.g. removable, winchester)
Example:
hp7914: sty=winchester:ns#16:nt#7:nc#1061:s0#118832\
:b0#8192:f0#1024:rm#3600:
HARDWARE DEPENDENCIES
Series 200:
The Series 200 SM HP-UX 5.0 release can have only one section per disc drive.
FILES
/etc/disktab
SEE ALSO
newfs(1M)
Hewlett—Packard -1-

July 9, 1985

ERRFILE(5) Series 500 Implementation ERRFILE(5)

NAME
errfile - system error logging file

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: HP
Remarks: This manual page describes errfile as implemented on the Series 500. Refer to other
errfile manual pages for information valid for other implementations.

DESCRIPTION
Errfile is a logging file containing lines of ASCII text. Each line describes certain system errors
that have occurred, or w'amings about serious system conditions. Only those system error mes—
sages deemed serious enough to be of interest to the system administrator are logged. Urgent
messages are also written to /dev/console.

HP-UX creates errfile if it does not exist.

The system administrator should check the contents of errfile periodically and note errors that
need attention. Also, errfile tends to grow without bounds, so outdated information needs to be
removed on a regular basis.

FILES
usr/adm/errfile

Hewlett—Packard -1- July 10, 1985

FS(5) (HFS Implementation)

NAME
fs - format of file system volume

SYNOPSIS
#include <sys/types.h>
#include <sys/param.h>
#include <sys/fs.h>
#include <sys/ino.h>
#include <sys/inode.h>
#include <sys/sysmacros.h>

HP-UX COMPATIBILITY
Level: Large Machine/HP Extension/HFS
Origin: HP and UCB 4.2

DESCRIPTION

FS(5)

Every file system storage volume has a common format for certain vital information. The first 8
kbytes on a volume contain a volume header which identifies that volume as a LIF volume. Such

volume may be divided into a number of sections.

Each section can contain a file system. The first 8 kbytes in each section is ignored, except where
it coincides with the volume header discussed above. The actual file system begins next with the
super block. The layout of the super block as defined by the include file <sys/fs.h> is:

#define FS_MAGIC 0x011954
#define FS_CLEAN 0x17

#define FS_OK 0x53
#define FS_NOTOK 0x31
struct fs {
struct fs *fs_link; /* linked list of file systems */
struct fs *fs_rlink; /* used for incore super blocks */
daddr_t fs_sblkno; /* addr of super-block in filesys */
daddr__t fs__cblkno; /* offset of cyl-block in filesys */
daddr_t fs__iblkno; /* offset of inode-blocks in filesys */
daddr_t fs_dblkno; /* offset of first data after cg */
long fs_cgoffset; /* cylinder group offset in cylinder */
long fs_cgmask; /* used to cale mod fs_ntrak */
time__t fs_time; /* last time written */
long fs_size; /* number of blocks in fs */
long fs_dsize; /* number of data blocks in fs */
long fs_ncg; /* number of cylinder groups */
long fs_bsize; /* size of basic blocks in fs */
long fs_fsize; /* size of frag blocks in fs */
long fs_frag; /* number of frags in a block in fs */
/* these are configuration parameters */
long fs_minfree; /* minimum percentage of free blocks */
long fs_rotdelay; /* num of ms for optimal next block */
long fs_rps; /* disk revolutions per second */
/* these fields can be computed from the others */
long fs_bmask; /* “blkoff”” calc of blk offsets */
long fs_fmask; /* “fragoff”’ calc of frag offsets */
long fs_bshift; /* “Iblkno” calc of logical blkno */
long fs_fshift; /* “numfrags” cale number of frags */
/* these are configuration parameters */
long fs_maxcontig; /* max number of contiguous blks */
long fs_maxbpg; /* max number of blks per cyl group */

/* these fields can be computed from the others */

Hewlett-Packard -1-

July 10, 1985

FS(5)

(HFS Implementation) FS(5)

long fs_fragshift; /* block to frag shift */
long fs_fsbtodb; /* fsbtodb and dbtofsb shift constant */
long fs_sbsize; /* actual size of super block */
long fs_csmask; /* csum block offset */
long fs_csshift; /* csum block number */
long fs_nindir; /* value of NINDIR */
long fs_inopb; /* value of INOPB */
long fs_nspf; /* value of NSPF */
long fs_sparecon|6]; /* reserved for future constants */
/* sizes determined by number of cylinder groups and their sizes */
daddr_t fs_csaddr; /* blk addr of cyl grp summary area */
long fs_cssize; /* size of cyl grp summary area */
long fs_cgsize; /* cylinder group size */
/* these fields should be derived from the hardware */
long fs_ntrak; /* tracks per cylinder */
long fs_msect; /* sectors per track */
long fs_spc; /* sectors per cylinder */
/* this comes from the disk driver partitioning */
long fs_ncyl; /* cylinders in file system */
/* these fields can be computed from the others */
long fs_cpg; /* cylinders per group */
long fs_ipg; /¥ i-nodes per group */
long fs_fpg; /* blocks per group * fs_frag */
/* this data must be re-computed after crashes */
struct csum fs_cstotal; /* cylinder summary information */
/* these fields are cleared at mount time */
char fs_fmod; . /* super block modified flag */
char fs_clean; /* file system is clean flag */
char fs_ronly; /* mounted read-only flag */
char fs_flags; /* currently unused flag */
char fs_fsmnt]MAXMNTLEN]; /* name mounted on */
/* these fields retain the current block allocation info */
long fs_cgrotor; /* last cg searched */
struct csum *fs__csp[MAXCSBUFS];/* list of fs_cs info buffers */
long fs_cpc; /* eyl per cycle in postbl */
short fs_postb[MAXCPG][NRPOS];/* head of blocks for each rotation */
long fs_magic; /* magic number */
char fs_namel6]; /* name of file system */
char fs_fpack[6]; /* pack name of file system */
u_char fs_rotbl[1]; /* list of blocks for each rotation */
/* actually longer */

b
A file system consists of a number of cylinder groups. Each cylinder group has i-nodes and data.

A file system is described by its super-block, which in turn describes the cylinder groups. The
super-block is critical data and is replicated in each cylinder group to protect against catastrophic
loss. This is done at file system creation time and the critical super-block data does not change,
so the copies need not be referenced further unless disaster strikes.

Addresses stored in i-nodes are capable of addressing fragments of ‘blocks’. File system blocks of
at most size MAXBSIZE can be optionally broken into smaller pieces, each of which is address—
able; these pieces may be DEV_BSIZE, or some multiple of a DEV__BSIZE unit.

Large files consist of exclusively large data blocks. To avoid undue wasted disk space, the last
data block of a file is allocated only as many fragments of a large block as are necessary, if that

Hewlett-Packard -2- July 10, 1985

FS(5)

(HFS Implementation) FS(5)

file is small enough to not require indirect data blocks. The file system format retains only a single
pointer to such a fragment, which is a piece of a single large block that has been divided. The size
of such a fragment is determinable from information in the i-node, using the “blksize(fs, ip, Ibn)”
macro.

The file system records space availability at the fragment level; to determine block availability,
aligned fragments are examined.

I-numbers begin at 0. I-nodes 0 and 1 are reserved. I-node 2 is used for the root directory of the
file system. The lost+found directory is given the next available inode when it is initially created
by mikfs.

fs—minfree gives the minimum acceptable percentage of file system blocks which may be free. If
the freelist drops below this level only the super-user may continue to allocate blocks. This may
be set to 0 if no reserve of free blocks is deemed necessary, however severe performance degrada-
tions will be observed if the file system is run at greater than 90% full; thus the default value of
fs_minfree is 10%.

The best trade-off between block fragmentation and overall disk utilization and performance
varies for each intended use of the file system. Suggested values can be found in the System
Administrator’s Manual for each implementation.

Cylinder group related limits: Each cylinder keeps track of the availability of blocks at different
rotational positions, so that sequential blocks can be laid out with minimum rotational latency.
NRPOS is the number of rotational positions which are distinguished. For example, with NRPOS
8 the resolution of the summary information is 2ms for a typical 3600 rpm drive.

fs_rotdelay gives the minimum number of milliseconds to initiate another disk transfer on the
same cylinder. It is used in determining the rotationally optimal layout for disk blocks within a
file; the default value for fs_rotdelay is 2ms. Suggested values of fs_rotdelay for different disks
can be found in the System Administrator’s Manual.

Each file system has a statically allocated number of i-nodes. An i-node is allocated for each
NBPI bytes of disk space. The i-node allocation strategy is extremely conservative.

MAXIPG bounds the number of i-nodes per cylinder group, and is needed only to keep the struc—
ture simpler by having only a single variable size element (the free bit map).

N.B.: MAXIPG must be a multiple of INOPB(fs).

MINBSIZE is the smallest allowable block size. With a MINBSIZE of 4096 it is possible to create
files of size 2°32 with only two levels of indirection. MINBSIZE must be big enough to hold a
cylinder group block, thus MINBSIZE must always be greater than sizeof(struct cg). Note that
super blocks are never more than size SBSIZE.

The path name on which the file system is mounted is maintained in fs__fsmni. MAXMNTLEN
defines the amount of space allocated in the super block for this name. The limit on the amount
of summary information per file system is defined by MAXCSBUFS. It is currently parameterized
for a maximum of two million cylinders.

Per cylinder group information is summarized in blocks allocated from the first cylinder group’s
data blocks. These blocks are read in from fs_csaddr (size fs_cssize) in addition to the super
block.

N.B.: sizeof (struct csum) must be a power of two in order for the “fs_cs” macro to work.

Super block for a file system: MAXBPC bounds the size of the rotational layout tables and is
limited by the fact that the super block is of size SBSIZE. The size of these tables is inversely
proportional to the block size of the file system. The size of the tables is increased when sector
sizes are not powers of two, as this increases the number of cylinders included before the rota—
tional pattern repeats (fs_cpc). The size of the rotational layout tables is derived from the

Hewlett-Packard -3~ July 10, 1985

FS(5)

(HFS Implementation) FS(5)

number of bytes remaining in (struct fs).

MAXBPG bounds the number of blocks of data per cylinder group, and is limited by the fact that
cylinder groups are at most one block. The size of the free block table is derived from the size of
blocks and the number of remaining bytes in the cylinder group structure (struct cg).

Inode: The i-node is the focus of all file activity in the HP-UX file system. There is a unique i~
node allocated for each active file, each current directory, each mounted-on file, text file, and the
root. An i-node is ‘named’ by its device/i-number pair. For the format of an i-node and its
flags, see tnode(5)

HARDWARE DEPENDENCIES

Series 200:

Series 200 HP-UX 5.0 release supports only one section per volume. Thus, there can only be one
file system on each volume and the first 8 kbytes of a file system is the boot area. This area con-
tains the LIF volume header, the directory that defines the contents of the volume and the
bootstrapping program.

HFS file structure is not implemented on Series 500 or Integral PC.

SEE ALSO

1if(1), HP-UX System Administrator’s Manual.

Hewlett—Packard -4 - July 10, 1985

FS(5)

NAME

Series 500 Implementation FS(5)

fs - format of system volume

SYNOPSIS

#include <sys/param.h>
#include <sys/filsys.h>

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD

Origin: HP

Remarks: This manual page describes the format of the system volume as implemented on the
Series 500. Refer to other fs manual pages for information valid for other implementa—

tions.
DESCRIPTION

Every Structured Directory Format (SDF) volume is divided into logical blocks, the size of which
is selected when init is executed. Block 0 is the superblock. It has the following format:

struct filsys {
ushort
ushort
char
time__ios
int
daddr_t
int
daddr_t
int
daddr_t
char
time__ios

}

s_format;
s__corrupt;
s_fname|[16];
s_init;
s_blksz;
s_boot;
s_bootsz;
s_fa;
s_version;
s__maxblk;
s_passwd[16];
s_bkup;

/#* disc fmt, should = 0x700 Unix */
/* non-zero if directory corrupt */
/#* root dir name, blank padded */
/* date initialized / unique id */

/* no. bytes per block */

/* boot area starting block */

/* size of boot area in blks %/

/* FA file starting block */

/* version no., 0 for Unix */

/* largest addressable blk */

/* volume password, Unix unused %/
/#* last backup date, Unix unused */
/#* rest of blk unused */

The file attributes file (FA file) begins at the block specified by s_fa in the superblock. It has five

major sections:

Hewlett-Packard

-1- July 10, 1985

FS(5)

FILES

Series 500 Implementation FS(5)

Each entry consists of 128 bytes. Entry 0 is the i-node of the FA file itself (see inode(5) for a
description of the i-node structure). Entry 1 is the i-node for the file system’s root directory, /.

Entry 3 through entry n consists of the free map, which keeps track of every free (unused) block
of memory on the device. The free map contains a bit for each block on the device. If a bit is set,
the corresponding block of memory is free; otherwise, the corresponding block is being used. The
free map is zero-padded to guarantee that it ends on a 128-byte boundary.

Entry n+1 through the end of the FA file contains an entry for every file in the system. Each
entry is either an i-node, an extent map, or unused. An extent map contains 128 bytes of infor—
mation, and looks as follows:

struct em_rec {

ushort e_type; /* =2 for extent maps %/
ushort e_exnum; /# # extents in this rec. */
int e_resl; /* unused x/
ino_t e_next; /* next map in list; none = neg */
ino_t e_last; /* last map in list; none = neg */
ino_t e_inode; /* owner i-node no. */
daddr_t e_boffset; /+ blk offset of 1st extent from start of file */
struct {
daddr_t e_startblk; /* extent start blk =/
int e_numblk; /* # blks in extent */
} e_extent[13];

h

/usr/include/sys/param.h
/usr/include/sys/filsys.h
/usr/include/sys/ino.h

SEE ALSO

inode(5), fsck(1M).

Hewlett-Packard -2- July 10, 1985

FSPEC(5) FSPEC(5)

NAME

fspec - format specification in text files

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V
Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION

It is sometimes convenient to maintain text files on the HP-UX system with non-standard tabs,
(i-e., tabs which are not set at every eighth column). Such files must generally be converted to a
standard format, frequently by replacing all tabs with the appropriate number of spaces, before
they can be processed by HP-UX system commands. A format specification occurring in the first
line of a text file specifies how tabs are to be expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and surrounded
by the brackets <: and :>. Each parameter consists of a keyletter, possibly followed immediately
by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of tabs must be one
of the following:

1. a list of column numbers separated by commas, indicating tabs set at the
specified columns;

2. a - followed immediately by an integer n, indicating tabs at intervals of n
columns;

3. a - followed by the name of a ‘“‘canned” tab specification.

Standard tabs are specified by t-8, or equivalently, t1,9,17,25,etc. The canned tabs
which are recognized are defined by the tabs(1) command.

ssize The s parameter specifies a maximum line size. The value of size must be an integer.
Size checking is performed after tabs have been expanded, but before the margin is
prepended.

mmargin The m parameter specifies a number of spaces to be prepended to each line. The
value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line containing the
format specification is to be deleted from the converted file.

e The e parameter takes no value. Its presence indicates that the current format is to
prevail only until another format specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are t-8 and m0. If the s parame—
ter is not specified, no size checking is performed. If the first line of a file does not contain a for—
mat specification, the above defaults are assumed for the entire file. The following is an example
of a line containing a format specification:

* <:t5,10,15 s72:> *

If a format specification can be disguised as a comment, it is not necessary to code the d parame—
ter.

Several HP-UX system commands have been specifically structured so they can correctly interpret
file format specifications.

HARDWARE DEPENDENCIES

Series 500:
Some earlier-design interface cards do not handle tab expansion correctly. This can cause
unexpected results.

Hewlett-Packard -1- July 9, 1985

FSPEC (5) FSPEC(5)

SEE ALSO
ed(1), newform(1), tabs(1).

BUGS
Does not work with vi(1) and ez(1).

Hewlett-Packard -2- July 9, 1985

GETTYDEFS(5) GETTYDEFS(5)

NAME
gettydefs - speed and terminal settings used by getty

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION
The /etc/gettydefs file contains information used by getty(1M) to set up the speed and terminal
settings for a line. It supplies information on what the login prompt should look like. It also sup—
plies the speed to try next if the user indicates the current speed is not correct by typing a
<break> character.

Each entry in /etc/gettydefs has the following format:
label# initial-flags # final-flags #login—prompt#next-label

The pound sign (#) is the field separator for lines in gettydefs. The spaces must appear as
shown. Each entry is followed by a blank line. Lines that begin with # are ignored and may be
used to comment the file. The various fields can contain quoted characters of the form \b, \n,
\¢, etc., as well as \nnn, where nnn is the octal value of the desired character. The various fields
are:

label This is the string against which getty tries to match its second argument. It is
often the speed, such as 1200, at which the terminal is supposed to run, but it
need not be (see below).

initial-flags These flags are the initial Joctl(2) settings to which the terminal is to be set. The
flags that getty understands are the same as the ones listed in
Jusr/include/termio.h (see tty(4)). Normally only the speed flag is required in the
initial-flags. Getty automatically sets the terminal to raw input mode and takes
care of most of the other flags. The inittal-flag settings remain in effect until getty
executes login(1).

final-flags These flags take the same values as the initial-flags and are set just prior to when
getty executes login. The speed flag is again required. The composite flag SANE
takes care of most of the other flags that need to be set so that the processor and
terminal are communicating in a rational fashion. The other two commonly
specified final-flags are TABS3, so that tabs are sent to the terminal as spaces, and
HUPCL, so that the line is hung up on the final close.

login—-prompt This entire field is printed as the login-prompt. Unlike the above fields where
white space is ignored (a space, tab or new-line), they are included in the login—
prompt field. Thus, it is important that only the characters making up the login
prompt be included between the #’s in this field, with no extra white space.

next-label If this entry does not specify the desired speed, indicated by the user typing a
<break> character, then getty searches for the entry with nezt-label as its label
field and sets up the terminal for those settings. Usually, a series of speeds are
linked together in this fashion, into a closed set: for instance, 2400 linked to 1200,
which in turn is linked to 300, which finally is linked to 2400.

If getty is called without a second argument, then the first entry of /etc/gettydefs is used, thus
making the first entry of /etc/gettydefs the default entry. It is also used if getty cannot find the
specified label. If /etc/gettydefs itself is missing, there is one entry built into the command
which brings up a terminal at 300 baud.

It is strongly recommended that /etc/gettydefs be run through getty with the check option to
be sure there are no errors.

Hewlett-Packard -1- July 9, 1985

GETTYDEFS (5) GETTYDEFS (5)

EXAMPLE
The following two lines show an example of a 300/1200 baud toggle, which is useful for dial-up
ports:

1200# B1200 HUPCL # B1200 SANE IXANY IXANY TAB3 #login: #300
300# B300 HUPCL # B300 SANE IXANY IXANY TAB3 #login: #1200

The following line shows a typical 9600 baud entry for a hard-wired connection:
9600# B9600 # B9600 SANE IXANY IXANY ECHOEL TAB3 #login: #9600

FILES
/ete/gettydefs

SEE ALSO
login(1), ioctl(2), tty(4), getty(1M).

Hewlett-Packard -2- July 9, 1985

GROUP (5) GROUP (5)

NAME
group - group file, grp.h
HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION
Group contains for each group the following information:

group name

encrypted password

numerical group ID

comma-separated list of all users allowed in the group

This is an ASCII file. The fields are separated by colons; each group is separated from the next by
a new-line. If the password field is null, no password is associated with the group.

There are two files of this form in the system, /etc/group and /etc/logingroup. /etc/group exists
to supply names for each group, and to support changing groups via newgrp(1). /etc/logingroup
provides a default group access list for each user via login(1) and initgroups(3c).

The real and effective group ID set up by login for each user is defined in /etc/passwd (see
passwd(5). If /etc/logingroup is empty or non-existent, the default group access list is limited to
this effective group ID. If /etc/logingroup and /etc/group are links to the same file, the default
access list includes the entire set of groups associated with the user. The group name and pass-
word fields in /etc/logingroup are never used; they are included only to give the two files a uni-
form format, allowing them to be linked together.

All group ID’s used in /etc/logingroup or /etc/passwd should be defined in /etc/group. No user
should be associated with more than NGROUPS (see setgroups(2)) groups in /etc/logingroup.

These files reside in directory /etc. Because of the encrypted passwords, they can and do have
general read permission and can be used, for example, to map numerical group ID’s to names.

Grp.h describes the group structure returned by getgrent(3), etc:

struct group { /* see getgrent(3) */
char *gr__name;
char *gr__passwd;
int gr_gid;
char **gr__mem;
b
FILES
/etc/group /etc/logingroup
SEE ALSO

groups(1), newgrp(1), passwd(1), setgroups(2), crypt(3C), getgrent(3), initgroups(3c), passwd(5).
BUGS

There is no tool that helps you ensure that /etc/passwd, /etc/group, and /etc/logingroup are
compatible.

There is no tool that helps you set group passwords in /etc/group.

Hewlett-Packard -1- July 9, 1985

INITTAB(5) : INITTAB (5)

NAME

inittab - script for the init process

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY
Origin: System V

Remarks: Not supported on the Integral Personal Computer.

DESCRIPTION

The inittab file supplies the script to init’s role as a general process dispatcher. The process that
constitutes the majority of init’s process dispatching activities is the line process /etc/getty that
initiates individual terminal lines. Other processes typically dispatched by init are daemons and
the shell.

The 7nittab file is composed of entries that are position dependent and have the following format:
id:rstate:action:process

Each entry is delimited by a newline, however, a backslash (\) preceding a newline indicates a
continuation of the entry. Up to 512 characters per entry are permitted. Comments may be
inserted in the process field using the sh(1) convention for comments. Comments for lines that
spawn gettys are displayed by the who(1) command. It is expected that they will contain some
information about the line such as the location. There are no limits (other than maximum entry
size) imposed on the number of entries within the inéttab file. The entry fields are:

id This is one or two characters used to uniquely identify an entry.

rstate This defines the run-level in which this entry is to be processed. Run-levels effectively
correspond to a configuration of processes in the system. That is, each process spawned
by init is assigned a run-level or run-levels in which it is allowed to exist. The run-
levels are represented by a number ranging from O through 6. As an example, if the
system is in run-level 1, only those entries having a 1 in the rstate field will be pro-
cessed. When init is requested to change run-levels, all processes which do not have an
entry in the rstate field for the target run-level will be sent the warning signal
(SIGTERM) and allowed a 20-second grace period before being forcibly terminated by a
kill signal (SIGKILL). The rstate field can define multiple run-levels for a process by
selecting more than one run-level in any combination from 0-6. If no run-level is
specified, then the process is assumed to be valid at all run-levels 0-6. There are three
other values, a, b and ¢, which can appear in the rstate field, even though they are not
true run—levels. Entries which have these characters in the rstate field are processed
only when the telinit (see init(1M)) process requests them to be run (regardless of the
current run-level of the system). They differ from run-levels in that init can never enter
run-level a, b or ¢. Also, a request for the execution of any of these processes does not
change the current run-level. Furthermore, a process started by an a, b or ¢ command
is not killed when init changes levels. They are only killed if their line in /etc/inittab
is marked off in the action field, their line is deleted entirely from /etc/inittab, or init
goes into the SINGLE USER state.

action Key words in this field tell snit how to treat the process specified in the process field.
The actions recognized by ¢nit are as follows:

respawn If the process does not exist then start the process, do not wait for its ter—
mination (continue scanning the tnittab file), and when it dies restart the
process. If the process currently exists then do nothing and continue scan—
ning the inittab file.

wait Upon init’s entering the run-level that matches the entry’s rstate, start
the process and wait for its termination. All subsequent reads of the init-
tab file while init is in the same run-level will cause init to ignore this

Hewlett-Packard -1- July 9, 1985

INITTAB (5)

once

boot

bootwait

powerfail

powerwait

off

ondemand

initdefault

sysinit

INITTAB (5)

entry.

Upon nit’s entering a run-level that matches the entry’s rstate, start the
process, do not wait for its termination. When it dies, do not restart the
process. If upon entering a new run-level, where the process is still run—
ning from a previous run-level change, the program will not be restarted.

The entry is to be processed only at init’s boot—time read of the inittab
file. Init is to start the process, not wait for its termination; and when it
dies, not restart the process. In order for this instruction to be meaning—
ful, the rstate should be the default or it must match init’s run-level at
boot time. This action is useful for an initialization function following a
hardware reboot of the system.

The entry is to be processed only at init’s boot—time read of the inittab
file. Init is to start the process, wait for its termination and, when it dies,
not restart the process.

Execute the process associated with this entry only when init receives a
power fail signal (SIGPWR see signal(2)).

Execute the process associated with this entry only when init receives a
power fail signal (SIGPWR) and wait until it terminates before continuing
any processing of inittab.

If the process associated with this entry is currently running, send the
warning signal (SIGTERM) and wait 20 seconds before forcibly terminat—
ing the process via the kill signal (SIGKILL). If the process is nonex—
istent, ignore the entry.

This instruction is really a synonym for the respawn action. It is func—
tionally identical to respawn but is given a different keyword in order to
divorce its association with run-levels. This is used only with the a, b or
¢ values described in the rstate field.

An entry with this action is only scanned when sn:t initially invoked. Init
uses this entry, if it exists, to determine which run-level to enter initially.
It does this by taking the highest run-level specified in the rstate field
and using that as its initial state. If the rstate field is empty, this is inter—
preted as 0123456 and so it will enter run—level 6. Additionally, if indt
does not find an initdefault entry in /etc/inittab, then it will request
an initial run—level from the user at reboot time.

Entries of this type are executed before init tries to access the console. It
is expected that this entry will be only used to initialize devices on which
init might try to ask the run-level question. These entries are executed
and waited for before continuing.

process This is a sh command to be executed. The entire process field is prefixed with ezec and
passed to a forked sh as sh -c rexec command!. For this reason, any legal sh syntax can
appear in the process field. Comments can be inserted with the ; #comment syntax.

FILES
/ete/inittab

SEE ALSO

sh(1), who(1), getty(1M), init(1M), exec(2), open(2)), signal(2).

Hewlett—Packard

-2- July 9, 1985

INODE (5) HFS Implementation INODE(5)

NAME
inode - format of an i-node

SYNOPSIS
#include <sys/types.h>
#include ,sys/inode.h>
#include <sys/ino.h>

HP-UX COMPATIBILITY
Level: Large Machine/HP Extension/HFS

Origin: HFS
Remarks: This entry describes the i-node structure for the HFS file system. Refer to other
inode(5) manual pages for information valid for other implementations.

DESCRIPTION
An i-node for a plain file or directory in a file system has the following structure defined by
<sys/ino.h> and <sys/inode.h>.

/* Inode structure as it appears on a disk block */

struct dinode

{
u_short di_mode; /* mode and type of file %/
short di_nlink; /% number of links to file */
short di_uid; /* owner’s user id */
short di_gid; /* owner’s group id x/
quad di_size; /* number of bytes in file */
time__t di__atime; /* time last accessed */
long di_atspare;
time_t di__mtime; /* time last modified */
long di_mtspare;
time__t di__ctime; /* time of last file status change */
long di__ctspare;
daddr_t di__db[NDADDRY]; /# disk block addresses */
daddr_t di_ib[NIADDR]; /# indirect blocks */
long di_flags; /* status, currently unused */
long di__blocks; /* blocks actually held */
long di__spare[5]; /* reserved, currently unused */
H

For the meaning of the defined types u_short, quad, daddr—t and time__t see types(7).

See /usr/include/sys/inode.h for the definition of i-node structures for special files, pipes, or
FIFO’s.

FILES
/usr/include/sys/ino.h

SEE ALSO
stat(2), fs(5), types(7).

Hewlett-Packard -1- July 11, 1985

INODE(5) Series 500 Implementation INODE(5)

NAME
inode - format of an i-node
SYNOPSIS
#include <sys/types.h>
#include <sys/param.h>
#include <sys/ino.h>

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: HP
Remarks: This entry describes the i-node structure for the Series 500. Refer to other inode
manual pages for information valid for other implementations.

DESCRIPTION
An i-node for an ordinary file or directory in a file system has the following structure, as defined
in sys/ino.h:
/*
* I-node structure as it appears on disc. This i-node is actually
* a file information record (FIR) in the HP SDF disc format.

*/
struct dinode {
ushort di__type /* =1 for inodes */
ushort di_ftype; /* file type */
ushort di__count; /* reference count */
short di_uftype; /* user file type (LIF) %/
time_jos di_ctime; /#* time created */
unsigned di_other; /* public capabilities x/
ino_t di__protect; /* file protect rec. none=-1 %/
ino_t di__label; /* file label rec. none=-1 %/
int di__blksz; /* file size in blocks */
int di__max; * largest byte writable %/
ushort di__exsz; /* recom. extent size %/
ushort di__exnum; /* no. i-node extents (1-4) */
struct {
daddr_t di_startblk;/+ extent start blk */
int di__numblk;/# no. blks in extent %/
} diextent[4];
ino_t di_exmap; /* inode 1st extent map */
/* none = -1 %/
int di_size; /* current size, bytes */

/* Warning! Next 2 fields apply only to directories x/

ino_t di__parent; /* inode of parent %/
char di_name[16]; /* name of this directory */

/* The remaining fields defined only for local */
/* implementation of structured directory format. x/

time__t di_atime; /* time last accessed */
time_ios di_mtime; /* time last mod. %/
int di__recsz; /* logical record size %/
ushort di__uid; /* owner’s user id */
ushort di__gid; /* owner’s group id */
ushort di__mode; /* mode, type of file %/

Hewlett-Packard -1- July 10, 1985

INODE(5) Series 500 Implementation

char di_res2[2]; /* unused */

/* The next field used only if file is %/
/* a device file; otherwise it is zero */

dev_t di__dev; /* description of device */

b

The meaning of the type declarations included above can be found in types(7).

FILES
/usr/include/sys/ino.h

SEE ALSO
dir(5), fs(5), types(7).

Hewlett-Packard -2-

INODE (5)

July 10, 1985

ISSUE(5) ISSUE(5)

NAME
issue - issue identification file

HP-UX COMPATIBILITY
Level: HP-UX/NUCLEUS
Origin: System V

DESCRIPTION
The file /etc/issue contains the issue or project identification to be printed as a login prompt.
This is an ASCII file which is read by program getty and then written to any terminal spawned or
respawned from the lines file.

FILES
/etc/issue

SEE ALSO
getti(1m), login(1).

Hewlett—Packard -1- July 9, 1985

,/—‘

LIF (5)

NAME

LIF(5)

LIF - Logical Interchange Format description

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: HP

DESCRIPTION

LIF (Logical Interchange Format) is a Hewlett-Packard standard disc format that may be used
for interchange of files among various HP computer systems. A LIF volume contains a header
(identifying it as a LIF volume) and a directory that defines the contents (i.e. files) of the volume.
The size of the directory is fixed when the volume is initialized (see lifinit(1)) and sets an upper
bound on the number of files that may be created on the volume.

HP-UX contains a set of utilities (referred to hereafter as lifx(1)) that may be used to initialize a
LIF volume (i.e. create a header and an empty directory), copy files to and from LIF volumes, list
the contents of LIF volumes, remove LIF files, and rename LIF files.

The lif«(1) utilities are the only utilities within HP-UX where the internal structure of a LIF
volume is known. To the rest of HP-UX a LIF volume is simply a file containing some unspecified
data. The term ‘LIF volume’ should in no way be confused with the HP-UX notion of a file sys—
tem volume or mountable volume.

The LIF utility on HP-UX currently supports three file types, ASCII(1), BINARY(-2) and
BIN(-23951).

There are three copying modes associated with them.

ASCII If the copying mode is ASCII, and an HP-UX file is being copied to a LIF volume, the
utility strips the trailing LF and prepends two bytes of record length to each record.
These records are then written to a LIF formated media. When copying a LIF ASCII
file to HP-UX the two byte record length are stripped and a trailing LF is appended.
These records are then written to the destination. In this mode of copying the length of
the file is preserved. The default file type for this mode of copying is ASCII(1).

BINARY

If the copying mode is BINARY, and an HP-UX file is being copied to a LIF volume,
the utility simply appends two bytes for record length to each 1k byte record. A trailing
fractional block will have a count reflecting the number of bytes in that block. No
interpretation is placed on the content of the records. These records are then written to
a LIF formated media. When copying a LIF file to an HP-UX file in BINARY copying
mode, the record lengths are stripped and the content of records is directly written to
the destination. In this mode of copying the length of the binary file is preserved. The
default file type for this mode of copying is BINARY (-2).

RAW If the copying mode is RAW, and an HP-UX file is being copied to a LIF volume, the
utility simply copies the raw data to the destination. File sizes which are not multiples
of 256 bytes will be padded with nulls to the next higher multiple. Therefore, the file
sizes are not preserved. When copying a LIF file to an HP-UX file in RAW mode, the
information is directly copied without any interpretation placed on the content of the
source. The default file type for this mode of copying is BIN(-23951).

A LIF volume may be created on any HP-UX file (either regular disc file or device special file)
that supports random access via Iseek(2). Note that you should not mount the special file before
using the lifk(1) routines. See lifinit(1) for details. Within a LIF volume, individual files are
identified by 1 to 10 character file names. File names may consist of upper—case alphanumeric
characters (A through Z, 0 through 9) and the underscore character (_). The first character of a
LIF file name must be a letter. The lif¥(1) utilities will accept any file name, including illegal file
names generated on other systems, but will only create legal names. For example, file names

Hewlett—Packard -1- July 9, 1985

LIF (5) LIF (5)

containing lower—case letters will be read but not created.

LIF file names are specified to the lif¥(1) utilities by concatenating the HP-UX path name for the
LIF volume with the LIF file name, separating the two with a colon (:). For example,

/dev/fd.0:ABC specifies LIF file ABC within HP-UX device special file /dev/fd.0.
myfile: ABC specifies LIF file ABC within HP-UX disc file ‘myfile’.

Note that this file naming convention is applicable only for use as arguments to the lif(1) utilities
and do not constitute legal path names for any other use within HP-UX.

HARDWARE DEPENDENCIES
Series 500:
You must use a character special file to access the media.

SEE ALSO
lifep(1), lifinit(1), lifls(1), lifrename(1), lifrm(1).

Hewlett—Packard -2- July 9, 1985

MAGIC (5) MAGIC (5)

NAME
magic - magic numbers for HP-UX implementations
SYNOPSIS
#include <magic.h>
HP-UX COMPATIBILITY
Level: Use: HP-UX/RUN ONLY
Header: HP-UX/DEVELOPMENT
Origin: HP
DESCRIPTION
Magic.h localizes all information about HP-UX “magic numbers” in one file, and thus facilitates

uniform treatment of magic numbers. This file specifies the location of the magic number in a file
(always the start of the file) and the structure of the magic number:

struct magic_number
{
unsigned short system__id;
unsigned short file_type;
¥
typedef struct magic_number MAGIC;
Magic.h includes definitions for the system IDs of all HP machines running HP-UX, and file types
that are common to all implementations. There may be additional implementation-dependent file
types. The predefined file types are:

/* for object code files */

#define RELOC_MAGIC 0x106 /* relocatable only */
#define EXEC_MAGIC 0x107 /* normal executable */
#define SHARE_MAGIC 0x108 /* shared executable */

HARDWARE DEPENDENCIES
Series 200:
The following additional file type is defined:

#define DEMAND_MAGIC 0x10B

SEE ALSO
ar(1), chatr(1), 1d(1), a.out(5), ar(5), model(5).

BUGS
Cpio files use a different form of magic number that is incompatible with magic(5).

Hewlett—Packard -1- July 9, 1985

MASTER(5) Series 200 Only MASTER(5)

NAME
master - master device information table

HP-UX COMPATIBILITY
Level: Config(1M) Support — HP-UX/RUN ONLY

Origin: System V and HP

DESCRIPTION
This file is used by config(1M) to obtain device information that enables it to generate the
configuration file. Master contains lines of various Master contains lines of various forms rame-
ters.

Software drivers are defined as follows:
Field 1: device name, used in the user-specified dfile (8 chars maximum)
Field 2: handler name, used by the kernel to prefix routines such as ¢s80_read, lp__write, ...

Field 3: element characteristics: 5 bits make up the mask
Bit 1 — card
Bit 2 - specified only once
Bit 3 — required driver
Bit 4 - block device
Bit 5 — character device

Field 4: functions for the device: 10 bits make up the mask
Bit 1 - size handler
Bit 2 - link routine
Bit 3 — open handler
Bit 4 - close handler
Bit 5 — read handler
Bit 6 — write handler
Bit 7 - ioct] handler
Bit 8 - select handler
Bit 9 - seltru handler
Bit 10 - C_ALLCLOSES flag

Field 5: major device number, if a block-type device
Field 6: major device number, if a character-type device

Aliases for names are defined as follows:

Field 1: alias name => product number
Field 2: device name

Parameters are defined as follows:

Field 1: parameter name, as used in the user-specified
dfile

Field 2: parameter name, as used in the #define statement
in conf.c

Field 3: parameter value

SEE ALSO
config(1M)

Hewlett-Packard -1- July 11, 1985

MKNOD (5) MKNOD (5)

NAME
mknod - create a special file entry

SYNOPSIS
#include <mknod.h>

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: HP

DESCRIPTION
Mknod.h provides utilities to pack and unpack device names as used by mknod(2). It contains
the macro dev = makedev(major, minor) which packs the major and minor fields into a form

suitable for mknod(2). It also contains major(dev) and minor(dev) which extract the
corresponding fields.

The macro MINOR_FORMAT is a printf specification that prints the minor field in the format
best suited to the particular implementation. The specification given by MINOR_FORMAT must
cause the resulting string to indicate the base of the number in the same format as that used for
C: no leading zero for decimal, leading zero for octal, and leading zero and ’x’ for hexadecimal.

When a minor field is printed in the format specified by MINOR_FORMAT, each sub-field con—
tained in the minor will be wholly contained in the mininum possible number of digits of the
resulting string. (Splitting a field across unnecessary digits for the sake of packing is not done.)

SEE ALSO .
mknod(1M), mknod(2), section 4.

WARNING
All of the macros defined in <mknod.h> are also defined in <sys/sysmacros.h> for Bell System V
compatibility. Mknod.h only exists for compatibility with previous releases of HP-UX, and should
not be used for new development.

Hewlett—Packard -1- July 9, 1985

MNTTAB(5)

NAME
mnttab - mounted file system table
SYNOPSIS
#include <sys/types.h>
#include <mnttab.h>
HP-UX COMPATIBILITY
Level: Large Machine/SVID
Origin: System V
DESCRIPTION

MNTTAB(5)

Mnttab resides in directory /etc and contains a table of devices, mounted by the mount(1M)

command, in the following structure as defined by <mnttab.h>:

struct mnttab {

char mt_dev[MNTLEN};
char mt_filsysy]MNTLEN];

short mt_ro_flg;

time__t mt__time;

5

Each entry is (2 x MNTLEN + 6) bytes in length (MNTLEN is defined in /usr/include/mnttab.h).
The first MNTLEN bytes are the null-padded name of the place where the special file is mounted;
the next MNTLEN bytes represent the null-padded root name of the mounted special file; the
remaining 6 bytes contain the mounted special file’s read/write permissions and the date on

which it was mounted. The minimum value for MNTLEN is 32.

The maximum number of entries in mnitab is based on the system parameter NMOUNT located
in /usr/include/mnttab.h, which defines the number of allowable mounted special files.

WARNING

The table is present only for programs to return information about the mounted file systems. It
does not matter to mount if there are duplicated entries nor to umount if a name cannot be

found.

SEE ALSO
mount(1M), setmnt(1M).

Hewlett—Packard

July 9, 1985

MODEL (5) MODEL (5)

NAME
model - HP-UX machine identification

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: HP
SYNOPSIS

#include <model.h>
DESCRIPTION

There are some distinctions between the implementations of HP-UX due to hardware differences.
Where such distinctions exist, conditional compilation or other definitions can be used to isolate
the differences. Flags and typedefs to resolve these distinctions are collected in model.h. This file
contains constants indentifying various HP-UX implementations.

For example, the header file model.h contains the constants HP_S_200 for Series 200 and
HP_S_500 for Series 500. Other such constants will be added as HP-UX extends to other
machines.

Model.h also has a statement defining the preprocessor constant MYSYS to represent the specific
implementation for which compilation is desired. MYSYS will be equal to one of the constants
above (HP_S_200 or HP_S_500).

Conditional compilation may be used to adapt one file for execution on more than one HP-UX
implementation, if it contains implementation— or architecture-dependent features. For instance,

#if MYSYS==HP_S_200
<statements>
#endif

will cause the statements following the if statement to be compiled only for the HP 9000 Series
200.

Model.h also contains typedefs for several predefined types to enhance portability of certain types
of code and of files.
int8
u_int8
Signed and unsigned 8-bit integers.
int16
u_int16
Signed and unsigned 16-bit integers.
int32
u_int32
Signed and unsigned 32-bit integers.
machptr
u_machptr
Signed and unsigned integers large enough to hold a pointer.
HARDWARE DEPENDENCIES

Series 200:
A conditional compilation variable, hp9000s200, is implemented. It is predefined to the C
Ppreprocessor.
Series 500:
A conditional compilation variable, hp9000s500, is implemented. It is predefined to the C
Preprocessor.
SEE ALSO

ce(1), epp(1), magic(5).

Hewlett—Packard -1- July 9, 1985

NLIST (5) NLIST (5)

NAME
nlist - nlist structure format

SYNOPSIS
#include <nlist.h>

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System IIT
Remarks: The exact content of the structure defined below can be best found by examining

/Jusr/include/nlist.h. It varies somewhat between the various implementations of HP-
UX.

Nlist is currently implemented on the Series 200 and Integral PC only.

DESCRIPTION
Nlist(3) can be used to extract information from a the symbol table in an object file. Because
symbol tables are machine dependent (as defined in each implementation’s copy of <a.out.h>) a
header file, nlist.h is defined to encapsulate the differences.

The nlist function, when used with the nlist structure can be used to extract certain information
about selected symbols in the symbol table. The data associated with each symbol is machine
specific, thus only the name and position of the n__name field in the nlist structure is standardized
by HP-UX. The rest of the structure includes at least the value and type of the symbol. The
names and meanings of all fields not standardized will change no more than necessary.

The structure, as defined for the Series 200, is:
struct nlist {

char *n_name;
long n__value;
unsigned char n_type;
unsigned char n_length;
short n_almod;
short n__unused;

b

SEE ALSO
nlist (3), a.out (5)

Hewlett—Packard -1- July 10, 1985

PASSWD(5) PASSWD (5)

NAME

passwd - password file, pwd.h

HP-UX COMPATIBILITY

Level: Multi-user - HP-UX/STANDARD
Origin: System V

DESCRIPTION

Passwd contains for each user the following information:

login name

encrypted password

numerical user ID

numerical group ID

reserved field which will be used for identification
initial working directory

program to use as shell

This is an ASCII file. Each field within each user’s entry is separated from the next by a colon.
Each user is separated from the next by a new-line. If the password field is null, no password is
demanded. If the shell field is null, /bin/sh is used.

This file resides in directory /etc. Because of the encrypted passwords, it can and does have gen—
eral read permission and can be used, for example, to map numerical user IDs to names.

The encrypted password consists of 13 characters chosen from a 64—character set of “digits”
described below, except when the password is null, in which case the encrypted password is also
null. Login can be prevented by entering in the password field a character that is not part of the
set of digits(e.g. *).

The characters used to represent “digits” are . for 0, / for 1, O through 9 for 2-11, A through Z
for 12-37, and a through z for 38-63.

The super-user can set up “password aging” for a user by inserting a comma and a string of char—
acters after the user’s encrypted password. The first character in the string is the maximum
number of weeks a password can remain valid; after that number of weeks elapses, the user will be
required to choose a new password upon logging in. The second character is the minimum
number of weeks that must elapse before the user can change passwords again. The rest of the
characters tell in which week the password was last changed (weeks are counted from the begin—
ning of 1970). A null string is the same as zero. If both the first and second characters are zero
(i.e. both “.”), the user must change passwords upon his or her next login; the “age” will then

disappear from the password file altogether. For example, if the super-user inserts “,..” after a
user’s encrypted password, the user will have to change passwords upon logging in; when that
happens, the “,..” will disappear. The comma is required.

If the second character has a greater decimal equivalent than the first (such as ”,./”), only the
super—user will be able to change the password.

Puwd.h designates the broken out password file as obtained by getpwent(3C):
struct passwd {

char *pw_name;
char *pw__passwd;
unsigned int *pw_uid;
unsigned int *pw__gid;

char *pw_age;

char *pw_comment;
char *PW__gecos;
char *pw_dir;

char *pw__shell;

Hewlett-Packard -1- July 9, 1985

PASSWD (5) PASBWD (5)

b
It is suggested that the range 0-99 not be used for user and group ID’s (pw_uid and pw_gid in
the above structure) so that IDs which may be assigned for system software do not conflict.

HARDWARE DEPENDENCIES
Series 200,/500:
The following fields have character limitations as noted:

the login name field can be no longer than 8 characters;
the initial working directory field can be no longer than 63 characters;
the program field can be no longer than 44 characters.
The results are unpredictable if these fields are longer than the limits specified above.

"The reserved field, called pw_gcos in the data structures used by getpwent(3C), is reserved
for future use. It currently may be used to contain any information the system manager
desires, but such use may conflict with the use of future HP features. The correct operation
of the system will never depend on this field, but some optional feature may specify its for—
mat and content.

FILES
/etc/passwd

SEE ALSO
login(1), passwd(1), a641(3C), crypt(3C), getpwent(3C), group(5).

Hewlett-Packard -2- July 9, 1985

PRIVGRP (5) Series 200/300 Only
NAME

privgrp — format of privileged values
SYNOPSIS

#include <sys/privgrp.h>

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: HP

Remarks:
Implemented on Series 200/300 only.

DESCRIPTION

PRIVGRP (5)

Setprivgrp(2) sets a mask of privileges, and Getprivgrp(2) returns an array of structures giving
privileged group assignments on a per group—id basis. Privgrp.h contains the constants and struc-

tures needed to deal with these system calls, and contains:

*

* Privileged group definitions --

* the numeric values may vary between implementations.

*

#define PRIV_RTPRIO 1
#define PRIV_MLOCK 2
#define PRIV_CHOWN 3

/* Maximum number of privileged groups in system */

#define PRIV_MAXGRPS 32

/*

* Size of the privilege mask,

* based on largest numbered privilege

*/

#define PRIV_MASKSIZ 1

/*

* Structure defining the privilege mask

*/

struct privgrp_map {

int priv_groupno;

unsigned int priv_mask[PRIV_MASKSIZ;
I8

/*

* Structure returned to user on getprivgrp system call.

*/

struct privgrp_list {
struct privgrp_map[PRIV_MAXGRPS+1];
h

PRIV_RTPRIO allows access to the rtprio(2) system call.

PRIV_MLOCK allows access to the plock(2) system call.
PRIV_CHOWN allows users to give files away.

Hewlett-Packard -1-

November 15, 1985

PRIVGRP (5) Series 200/300 Only PRIVGRP (5)

Privileges are described in a multi-word mask. The value of the #define for each privilege is
interpreted as a bit index (counting from 1). Thus a group-id may have several different
privileges assocaited with it by having different bits or’ed into the mask.

The system is configured with a maximun number of groups with special privileges.
PRIV_MAXGRPS defines this maximum.

PRIV_MASKSIZ defines the size of the multi-word mask used defining privileges associated with
a group-id.

Privileges are returned to the user from the getprivgrp(2) system call in array of structures of type
struct privgrp_mask. The structure associates a multi-word mask with a group-id.

SEE ALSO
getprivgrp(2)

Hewlett-Packard -2- November 15, 1985

PROFILE (5) PROFILE (5)

NAME
profile - set up user’s environment at login time

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System III

DESCRIPTION
If the file /etc/profile exists, it is executed by the shell for every user who logs in. /etc/profile
should be set up to do only those things that are desirable for every user on the system, or to set
reasonable defaults. If your login (home) directory contains a file named .profile, it will be exe-
cuted before your session begins. Profile files are useful for setting various environment parame-
ters, setting terminal modes, or overriding some or all of the results of executing /etc/profile.

The following example is typical (except for the comments):

Make some environment variables global

export MAIL PATH TERM

Set file creation mask

umask 22

Tell me when new mail comes in
MAIL=/usr/mail/myname

Add my /bin directory to the shell search sequence
PATH=$PATH:$HOME/bin

FILES
$HOME/ .profile
/ete/profile

SEE ALSO
env(1), login(1), mail(1), sh(1), stty(1), su(1), environ(7), term(7).

Hewlett—Packard -1- July 9, 1985

RANLIB (5) RANLIB (5)

NAME
ranlib - archive symbol table format for object libraries

SYNOPSIS
#include <ranlib.h>

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: HP
DESCRIPTION

Any archive containing object files also includes an archive symbol table, thus allowing the linker
ld to scan libraries in random (rather than sequential) order.

The archive symbol table (if it exists) is always the first file in the archive, but it is never listed.
It is automatically created and/or updated by ar.

The archive symbol table lists each externally known name in the archive, together with the offset
of the archive element that defines that name. This offset is useful as an input argument to
Iseek(2) or fseek(3).

HARDWARE DEPENDENCIES
Series 500:
The archive symbol table file contains the symbol table and a name pool of strings (the
names of external symbols). This allows for symbols with arbitrarily long names. The
rl__hdr structure defines the layout of the file, and the rl_ref structure defines the con—
tents of an archive symbol table entry. These structures have the following format:

struct rl_hdr {

long int rl_tcbas; /* offset of table */
long int rl__tclen; /* length of table */
long int rl_nmbas; /* offset of name pool */
long int rl_nmlen; /* length of name pool */
b
struct rl_ref {
long int name__pos; /* index into name pool */
long int lib_pos; /* offset of defining file */
b
Series 200:

The archive symbol table file contains a header, a name pool of strings (the names of
external symbols), and the archive symbol table. This allows for symbols with arbitrarily
long names. The header contains a short integer which specifies the number of entries,
and a long integer which specifies the size of the string table. Following this is the name
pool. The last section of the file contains the archive symbol table entries. The structure
of these entries is defined below:

typedef-long off__t;

struct ranlib {
union {
off_t ran_strx; /* string table index x/
char *ran_ name;
} ran_un;
off_t ran_off; /* lib member offset %/
b

Hewlett-Packard -1- July 9, 1985

RANLIB(5) RANLIB(5)

SEE ALSO
ar(1), 1d(1), ar(5).

Hewlett—Packard -2~ July 9, 1985

SCCSFILE (5) SCCSFILE (5)

NAME
scesfile - format of SCCS file

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System IIT

DESCRIPTION
An BCCS file is an ASCII file. It consists of six logical parts: the checksum, the delta table (con—
tains information about each delta), user names (contains login names and/or numerical group
IDs of users who may add deltas), flags (contains definitions of internal keywords), comments
(contains arbitrary descriptive information about the file), and the body (contains the actual text
lines intermixed with control lines).

Throughout an 8CCS file there are lines which begin with the ASCII SOH (start of heading) char-
acter (octal 001). This character is hereafter referred to as the control character and will be
represented graphically as @. Any line described below which is not depicted as beginning with
the control character is prevented from beginning with the control character.

Entries of the form DDDDD represent a five digit string (a number between 00000 and 99999).
Each logical part of an SCCS file is described in detail below.

Checksum
The checksum is the first line of an SCCS file. The form of the line is:

@hDDDDD

The value of the checksum is the sum of all characters, except those of the first line. The
@h provides a magic number of (octal) 000550 (0168 hex).

Delta table
The delta table consists of a variable number of entries of the form:

Qs DDDDD/ DDDDD/DDDDD
@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDDD
@i DDDDD ...
@x DDDDD ...
@g DDDDD ...
@m <MR number>

@c <comments> ...

Qe
The first line (@s) contains the number of lines inserted/deleted/unchanged respectively.
The second line (@d) contains the type of the delta (currently, normal: D, and removed:
R), the SCCS ID of the delta, the date and time of creation of the delta, the login name

corresponding to the real user ID at the time the delta was created, and the serial
numbers of the delta and its predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas included, excluded, and
ignored, respectively. These lines are optional.

The @m lines (optional) each contain one MR number associated with the delta; the @c

Hewlett-Packard -1- July 9, 1985

SCCSFILE (5) SCCSFILE (5)

lines contain comments associated with the delta.

The @e line ends the delta table entry.

User names
The list of login names and/or numerical group IDs of users who may add deltas to the
file, separated by new-lines. The lines containing these login names and/or numerical
group IDs are surrounded by the bracketing lines @u and @QU. An empty list allows any—
one to make a delta.

Keywords used internally (see admin(1) for more information on their use). Each flag
line takes the form:

Qf <flag> <optional text>
The following flags are defined:

@ft <type of program>
@f v <program name>

@f i

Qf b

@f m <module name>
@ff <floor>

@fc <ceiling>

@fd <default-sid>
Q@f n

Qf j

@f1 <lock-releases>
@f q <user defined>

The t flag defines the replacement for the %Y% identification keyword. The v flag con—
trols prompting for MR numbers in addition to comments; if the optional text is present
it defines an MR number validity checking program. The i flag controls the
warning/error aspect of the “No id keywords” message. When the i flag is not present,
this message is only a warning; when the i flag is present, this message will cause a
“fatal” error (the file will not be gotten, or the delta will not be made). When the b flag
is present the -b keyletter may be used on the get command to cause a branch in the
delta tree. The m flag defines the first choice for the replacement text of the %M%
identification keyword. The f flag defines the “floor” release; the release below which no
deltas may be added. The ¢ flag defines the “ceiling” release; the release above which no
deltas may be added. The d flag defines the default SID to be used when none is specified
on a get command. The n flag causes delta to insert a “null” delta (a delta that applies
no changes) in those releases that are skipped when a delta is made in a new release (e.g.,
when delta 5.1 is made after delta 2.7, releases 3 and 4 are skipped). The absence of the
n flag causes skipped releases to be completely empty. The j flag causes get to allow con—
current edits of the same base SID. The 1 flag defines a list of releases that are locked
against editing (get(1) with the -e keyletter). The q flag defines the replacement for the
%Q% identification keyword.

Comments
Arbitrary text surrounded by the bracketing lines @t and @QT. The comments section
typically will contain a description of the file’s purpose.

The body consists of text lines and control lines. Text lines don’t begin with the control
character, control lines do. There are three kinds of control lines: nsert,” delete, and

Hewlett—Packard -2- July 9, 1985

SCCSFILE (5) SCCSFILE (5)

end, represented by:

@I DDDDD
@D DDDDD
QE DDDDD

respectively. The digit string is the serial number corresponding to the delta for the con—
trol line.

SEE ALSO
admin(1), delta(1), get(1), prs(1).

SCCS User’s Guide in HP-UX Concepts and Tutorials.

Hewlett-Packard -3- July 9, 1985

TERM (5) TERM (5)

NAME

term - format of compiled term file.

SYNOPSIS

term

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V

DESCRIPTION

Compiled terminfo descriptions are placed under the directory /usr/lib/terminfo. In order to
avoid a linear search of a huge HP-UX system directory, a two-level scheme is used:
/usr/lib/terminfo/c/name where name is the name of the terminal, and c¢ is the first character
of name. Thus, act4 can be found in the file /usr/lib/terminfo/a/act4. Synonyms for the
same terminal are implemented by multiple links to the same compiled file.

The format has been chosen so that it will be the same on all hardware. An 8 or more bit byte is
assumed, but no assumptions about byte ordering or sign extension are made.

The compiled file is created with the tic(1M) program, and read by the routine setupterm. Both
of these pieces of software are part of curses(3X). The file is divided into six parts: the header,
terminal names, boolean flags, numbers, strings, and string table.

The header section begins the file. This section contains six short integers in the format described
below. These integers are (1) the magic number (octal 0432); (2) the size, in bytes, of the names
section; (3) the number of bytes in the boolean section; (4) the number of short integers in the
numbers section; (5) the number of offsets (short integers) in the strings section; (6) the size, in
bytes, of the string table.

Short integers are stored in two 8-bit bytes. The first byte contains the least significant 8 bits of
the value, and the second byte contains the most significant 8 bits. (Thus, the value represented
is 256*second+first.) The value -1 is represented by 0377, 0377, other negative value are illegal.
The -1 generally means that a capability is missing from this terminal. Machines where this does
not correspond to the hardware read the integers as two bytes and compute the result.

The terminal names section comes next. It contains the first line of the terminfo description, list—
ing the various names for the terminal, separated by the ‘|’ character. The section is terminated
with an ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either 0 or 1 as the flag is present or
absent. The capabilities are in the same order as the file <term.h>.

Between the boolean section and the number section, a null byte will be inserted, if necessary, to
ensure that the number section begins on an even byte. All short integers are aligned on a short
word boundary.

The numbers section is similar to the flags section. Each capability takes up two bytes, and is
stored as a short integer. If the value represented is -1, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short integer, in the format
above. A value of -1 means the capability is missing. Otherwise, the value is taken as an offset
from the beginning of the string table. Special characters in "X or \c notation are stored in their
interpreted form, not the printing representation. Padding information $<nn> and parameter
information %x are stored intact in uninterpreted form.

The final section is the string table. It contains all the values of string capabilities referenced in
the string section. Each string is null terminated.

Note that it is possible for setupterm to expect a different set of capabilities than are actually
present in the file. Either the database may have been updated since setupterm has been recom—
piled (resulting in extra unrecognized entries in the file) or the program may have been recompiled

Hewlett-Packard -1- July 9, 1985

TERM(5)

TERM (5)

more recently than the database was updated (resulting in missing entries). The routine setup-
term must be prepared for both possibilities - this is why the numbers and sizes are included.
Also, new capabilities must always be added at the end of the lists of boolean, number, and string

capabilities.

As an example, an octal dump of the description for the Microterm ACT 4 is included:

microterm|act4 |microterm act iv,
cr="M, cudl="J, ind="J, bel="G, am, cubl="H,
ed="_, el="", clear="L, cup="T%p1%c%p2%c,
cols#80, lines#24, cufl="X, cuul="7, home="],

000 032 001 \0 025 \0o \b \0 212 \0O " \o m
020 o t e r m | a ¢ t 4 I m i
040 ¢t e r m a ¢ ot i v \0 \O

060 N0 \0o N0 N0 N0 N0 N0 N\ N0 \o \o \o \O
100 \0 \0 P \O 377 377 030 \o 377 377 377 377 377
120 377 377 377 377 \O \O 002 \O 377 377 377 377 004
140 \b \O 377 377 377 377 \n \0 026 \O 030 \0 377
160 377 377 377 377 034 \0O 377 377 036 \0O 377 377 377
200 377 377 377 377 377 377 377 377 377 377 377 377 377

520 377 377 377 377 \0 377 377 377 377 377 377 377
540 377 377 377 377 377 377 007 \0 \r \O \f \0 036
560 024 % p 1 % ¢ % p 2 % ¢ \0 \n
600 \b \0 030 \0 032 \0 \n \O

001

377
006
032
377
377

377
037
035

Some limitations: total compiled entries cannot exceed 4096 bytes. The name field cannot exceed

128 bytes.
FILES

/usr/lib/terminfo/?/* compiled terminal capability data base

SEE ALSO
tic(1M), curses(3X), terminfo(5).

Hewlett-Packard . -2-

July 9, 1985

TERMINFO (5) TERMINFO (5)

NAME
terminfo - terminal capability data base

SYNOPSIS
/usr/lib/terminfo/?/*

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION
Terminfo is a data base describing terminals that is used by programs and subroutines such as
vi(1) and curses(3X). Terminals are described in terminfo by giving a set of capabilities which
they have, and by describing how operations are performed. Padding requirements and initializa—
tion sequences are included in terminfo.

Entries in terminfo consist of a number of ‘, separated fields. White space after each ‘) is
ignored. The first entry for each terminal gives the names which are known for the terminal,
separated by ‘|’ characters. The first name given is the most common abbreviation for the termi-
nal, the last name given should be a long name fully identifying the terminal, and all others are
understood as synonyms for the terminal name. All names but the last should be in lower case
and contain no blanks; the last name may well contain upper case and blanks for readability.

Terminal names (except for the last, verbose entry) should be chosen using the following conven—
tions. The particular piece of hardware making up the terminal should have a root name chosen,
thus “hp2621”. This name should not contain hyphens, except that synonyms may be chosen
that do not conflict with other names. Modes that the hardware can be in, or user preferences,
should be indicated by appending a hyphen and an indicator of the mode. Thus, a vt100 in 132
column mode would be vt100-w. The following suffixes should be used where possible:

Suffix Meaning Example
-w Wide mode (more than 80 columns) vt100-w
—am With auto. margins (usually default) vt100-am
—-nam Without automatic margins vt100-nam
-n Number of lines on the screen aaa—60
-na No arrow keys (leave them in local) c100-na
-np Number of pages of memory c100-4p
-Iv Reverse video c100-rv
CAPABILITIES

The variable is the name by which the programmer (at the terminfo level) accesses the capability.
The capname is the short name used in the text of the database, and is used by a person updating
the database. The i.code is the two letter internal code used in the compiled database, and
always corresponds to the old termcap capability name.

Capability names have no hard length limit, but an informal limit of 5 characters has been
adopted to keep them short and to allow the tabs in the source file caps to line up nicely. When—
ever possible, names are chosen to be the same as or similar to the ANSI X3.64-1979 standard.
Semantics are also intended to match those of the specification.

(P) indicates that padding may be specified
(G) indicates that the string is passed through tparm withparms as given (#1).
* indicates that padding may be based on the number of lines affected

(#i) indicates the i parameter.

Hewlett-Packard -1- July 9, 1985

TERMINFO(5)

Variable
Booleans
auto_left__margin,

auto_right__margin,
beehive_glitch,
ceol_standout_glitch,

eat_newline__glitch,

erase_overstrike,
generic__type,

hard__copy,
has_meta_key,

has_status_line,
insert_null__glitch,
memory__above,

memory__below,

move_insert__mode,
move_standout_mode,
over_strike,
status_line__esc__ok,
teleray__glitch,

tilde_glitch,
transparent__underline,
xon__xoff,

Numbers:
columns,
init__tabs,

lines,
lines_of__memory,

magic_cookie—glitch,
padding__baud_rate,

virtual__terminal,
width__status_line,

Strings:

back__tab,

bell,

carriage_return,
change__scroll_region,

clear_all__tabs,

clear_screen,
clr__eol,

Hewlett-Packard

Cap-—
name
bw

am
xsb

xenl

eo

he
km

da
db

mir
msgr
0s
eslok
xt

hz
ul
xon

pb

vt
wsl

cbt
bel
cr

csr

tbe
clear
el

Code
bw

xb

eo

he
km

hz
ul
X0

sg
pb

vt
ws

bt
bl
cr
cs

ct
cl
ce

TERMINFO (5)

Description

cubl wraps from column 0 to last
column

Terminal has automatic margins
Beehive (fl=escape, f2=ctrl C)
Standout not erased by overwriting
(hp)

newline ignored after 80 cols
(Concept)

Can erase overstrikes with a blank
Generic line type (e.g.,, dialup,
switch).

Hardcopy terminal

Has a meta key (shift, sets parity
bit)

Has extra “status line”

Insert mode distinguishes nulls
Display may be retained above the
screen

Display may be retained below the
screen

Safe to move while in insert mode
Safe to move in standout modes
Terminal overstrikes

Escape can be used on the status line
Tabs ruin, magic so char (Teleray
1061)

Hazeltine; can not print ~’s
underline character overstrikes
Terminal uses xon/xoff handshaking

Number of columns in a line

Tabs initially every # spaces

Number of lines on screen or page
Lines of memory if > lines. 0 means
varies

Number of blank chars left by smso or
rmso

Lowest baud where cr/nl padding is
needed

Virtual terminal number (UNIX system)
No. columns in status line

Back tab (P)

Audible signal (bell) (P)

Carriage return (P*)

change to lines #1 through #2 (vt100)
(PG)

Clear all tab stops (P)

Clear screen and home cursor (P*)
Clear to end of line (P)

July 9, 1985

TERMINFO (5)

clr_eos,
column__address,
command__character,
cursor—address,

cursor—down,
cursor_home,
cursor—invisible,
cursor_left,
cursor—mem__address,
cursor_normal,
cursor_right,
cursor_to_ll,
cursor—up,
cursor_visible,
delete__character,
delete_line,
dis__status_line,
down_half_line,
enter__alt__charset_mode,
enter__blink__mode,
enter_bold_mode,
enter__ca_mode,
enter__delete__mode,
enter__dim__mode,
enter_insert__mode,
enter__protected_mode,
enter_reverse_mode,
enter_secure__mode,
enter_standout_mode,
enter__underline_mode,
erase_chars
exit__alt__charset_mode,
exit_attribute_mode,
exit__ca_mode;
exit__delete_mode,
exit_insert__mode,
exit_standout_mode,
exit_underline_mode,
flash__screen,
form__feed,
from__status_line,
init__1string,
init__2string,
init__3string,

init_file,
insert_character,
insert_line,
insert_padding,

key__backspace,
key_catab,
key__clear,
key__ctab,

Hewlett-Packard

ed
hpa
cmdch
cup

cudl
home
civis
cubl
mrcup
cnorm
cufl

1
cuul
cvvis
dchl
di1
dsl
hd
smacs
blink
bold
smcup
smdc
dim
smir
prot
rev
invis
Smso
smul
ech
rmacs
sgr0
rmeup
rmde
rmir
rmso
rmul
flash
ff

fsl

isl

is2

is3

if

ichl
il1

kbs
ktbe
kelr
ketab

cd
ch
CC
cm

kb
ka
kC
kt

TERMINFO (5)

Clear to end of display (P*)

Set cursor column (PG)

Term. settable cmd char in prototype
Screen rel. cursor motion row #1
col #2 (PG)

Down one line

Home cursor (if no cup)

Make cursor invisible

Move cursor left one space

Memory relative cursor addressing
Make cursor appear normal (undo vs/vi)
Non-destructive space (cursor right)
Last line, first column (if no cup)
Upline (cursor up)

Make cursor very visible

Delete character (P*)

Delete line (P*)

Disable status line

Half-line down (forward 1/2 linefeed)
Start alternate character set (P)
Turn on blinking

Turn on bold (extra bright) mode
String to begin programs that use cup
Delete mode (enter)

Turn on half-bright mode

Insert mode (enter);

Turn on protected mode

Turn on reverse video mode

Turn on blank mode (chars invisible)
Begin stand out mode

Start underscore mode

Erase #1 characters (PG)

End alternate character set (P)
Turn off all attributes

String to end programs that use cup
End delete mode

End insert mode

End stand out mode

End underscore mode

Visible bell (may not move cursor)
Hardcopy terminal page eject (P*)
Return from status line

Terminal initialization string
Terminal initialization string
Terminal initialization string

Name of file containing is

Insert character (P)

Add new blank line (P*)

Insert pad after character inserted
(%)

Sent by backspace key

Sent by clear-all-tabs key

Sent by clear screen or erase key
Sent by clear-tab key

July 9, 1985

TERMINFO (5) TERMINFO (5)

key_dc, kdch1 kD Sent by delete character key

key_dl, kdll kL Sent by delete line key

key_down, keud1 kd Sent by terminal down arrow key

key_eic, krmir kM Sent by rmir or smir in insert mode

key_eol, kel kE Sent by clear-to—end-of-line key

key_eos, ked kS Sent by clear-to—end—-of-screen key

key_f0, kf0 kO Sent by function key fO

key_f1, kf1 k1 Sent by function key f1

key_£10, kf10 k; Sent by function key f10

key_f2, kf2 k2 Sent by function key 2

key_f3, kf3 k3 Sent by function key f3

key_f4, kf4 k4 Sent by function key f4

key_15, kf5 k5 Sent by function key f5

key_{6, kf6 k6 Sent by function key f6

key_f7, kf7 k7 Sent by function key 7

key_ {8, kf8 k8 Sent by function key {8

key_1{9, kf9 k9 Sent by function key f9

key_home, khome kh Sent by home key

key_ic, kichl kI Sent by ins char/enter ins mode key

key_il, kill kA Sent by insert line

key_left, kcubl k1 Sent by terminal left arrow key

key_1l, kll kH Sent by home-down key

key_npage, knp kN Sent by next-page key

key_ppage, kpp kP Sent by previous-page key

key_right, keufl kr Sent by terminal right arrow key

key_sf, kind kF Sent by scroll-forward/down key

key_sr, kri kR Sent by scroll-backward/up key

key_stab, khts kT Sent by set-tab key

key_up, keuul ku Sent by terminal up arrow key

keypad_local, rmkx ke Out of "keypad transmit” mode

keypad_xmit, smkx ks Put terminal in “keypad transmit” mode

lab__{0, 1f0 10 Labels on function key f0 if not f0

lab_f1, 1f1 11 Labels on function key f1 if not f1

lab__f10, 1f10 la Labels on function key f10 if not f10

lab_f2, 1f2 12 Labels on function key f2 if not f2

lab_f3, 1f3 13 Labels on function key f3 if not £3

lab_f4, 1f4 14 Labels on function key f4 if not f4

lab__f5, 15 15 Labels on function key f5 if not f5

lab_16, 1f6 16 Labels on function key 6 if not 6

lab_{7, 17 17 Labels on function key f7 if not 7

lab__{8, 18 18 Labels on function key f8 if not {8

lab_19, 1f9 19 Labels on function key 9 if not f9

memory_lock mem] ml Enable memory lock

memory.__unlock memu mu Disable memory lock

meta_on, smm mm Turn on “meta mode” (8th bit)

meta_off, rmm mo Turn off “meta mode”

newline, nel nw Newline (behaves like cr followed
by If)

pad_char, pad pc Pad character (rather than null)

parm_dch, dch DC Delete #1 chars (PG¥)

parm__delete_line, dl DL Delete #1 lines (PG*)

parm__down__cursor, cud DO Move cursor down #1 lines (PG*)

parm_ich, ich IC Insert #1 blank chars (PG*)

parm__index, indn SF Scroll forward #1 lines (PG)

Hewlett—Packard -4 - July 9, 1985

TERMINFO (5)

parm__insert_line,
parm__left__cursor,
parm_right__cursor,
parm_rindex,
parm__up__cursor,
pkey_key,
pkey_local,
pkey_xmit,
print__screen,
prtr_off,

prtr_on,
repeat_char,
reset__lstring,
reset__2string,
reset__3string,
reset_file,
restore_cursor,
row_address,

save__cursor,
scroll forward,
scroll_reverse,
set_attributes,
set_tab,
set_window,

tab,
to_status_line,
underline__char,
up_half_line,
init_prog,
key_al,
key_a3,
key_b2,
key_cl,
key_c3,
prtr_non,

A Sample Entry

cub
cuf
rin
cuu
ptkey
pfloc
pfx
mc0
mc4
mcd
rep
sl
rs2
rs3
of

re
vpa

sc
ind
ri
sgr
hts
wind

ht

tsl
uc
hu
iprog
kal
ka3
kb2
kel
ke3
meSp

AL
LE
RI
SR
UP
pk
pl
px
ps
pf
po
p
rl
r2
r3
f
rce
cv

sc
sf
ST
sa
st
wi

ta
ts
uc
hu
iP
K1
K3
K2
K4
K5
pO

TERMINFO (5)

Add #1 new blank lines (PG¥)

Move cursor left #1 spaces (PG)-

Move cursor right #1 spaces (PG*)
Scroll backward #1 lines (PG)

Move cursor up #1 lines (PG*)

Prog funct key #1 to type string #2
Prog funct key #1 to execute string #2
Prog funct key #1 to xmit string #2
Print contents of the screen

Turn off the printer

Turn on the printer

Repeat char #1 #2 times. (PG*)
Reset terminal completely to sane modes.
Reset terminal completely to sane modes.
Reset terminal completely to sane modes.
Name of file containing reset string
Restore cursor to position of last sc
Vertical position absolute

(set row) (PG)

Save cursor position (P)

Scroll text up (P)

Scroll text down (P)

Define the video attributes (PG9)

Set a tab in all rows, current column
Current window is lines #1-#2

cols #3-#4

Tab to next 8 space hardware tab stop
Go to status line, column #1
Underscore one char and move past it
Half-line up (reverse 1/2 linefeed)

Path name of program for init

Upper left of keypad

Upper right of keypad

Center of keypad

Lower left of keypad

Lower right of keypad

Turn on the printer for #1 bytes

The following entry, which describes the Concept-100, is among the more complex entries in the

terminfo file as of this writing.

pt100 | c100] pt | c104 | c100-4p | concept 100,

am, bel="G, blank=\EH, blink=\EC, clear="L$<2+>,
cols#80, cr="M$<9>, cubl="H, cudi="J, cufi=\E=,
cup=\Ea%pi%’ ’%+hcip2h’ %+ic,

cuul=\E;, cvvis=\EW, db, dch1=\E'A$<16%>, dim=\EE,
ed=\E"C$<16+>, el=\E'U$<16>, eo, flash=\Ek$<20>\EK,
il1=\E"R$<3%>, in, ind="J, .ind="J$<9>, ip=$<16x>,

182=\EU\Ef\E7\ES\E8\E1\ENH\EK\E\200\Eo&\200\Eo\47\E,

kbs="h,

kf1=\E5,
lines#24, mir,
rev=\ED, rmcup=\Ev
rmso=\Ed\Ee,

kcub1=\E>, kcud1=\E<,
k£2=\E6, kf3=\E7,
pb#9600, prot=\EI,
$<6>\Ep\r\n,

rmul=\Eg, rmul=\Eg,

Hewlett-Packard

kcuf1=\E=,
khome=\E?,
rep=\ErYp1’cip2/’
rmir=\E\200,
sgr0=\EN\200,

kcuul=\E;,

cnorm=\Ew,

d11=\E"B$<3%>,

ht=\t$<8>,

Yhtlhe$<.2%>,

rmkx=\Ex,

July 9, 1985

TERMINFO (5) TERMINFO (5)

smcup=\EU\Ev 8p\Ep\r, smir=\E'P, smkx=\EX, smso=\EE\ED,
smul=\EG, tabs, ul, vt#8, xenl,

Entries may continue onto multiple lines by placing white space at the beginning of each line
except the first. Comments may be included on lines beginning with “#”. Capabilities in ter-
minfo are of three types: Boolean capabilities which indicate that the terminal has some particu—
lar feature, numeric capabilities giving the size of the terminal or the size of particular delays, and
string capabilities, which give a sequence which can be used to perform particular terminal opera—
tions.

Types of Capabilities

All capabilities have names. For instance, the fact that the Concept has automatic margins (i.e.,
an automatic return and linefeed when the end of a line is reached) is indicated by the capability
am. Hence the description of the Concept includes am. Numeric capabilities are followed by the
character ‘4’ and then the value. Thus cols, which indicates the number of columns the terminal
has, gives the value ‘80’ for the Concept.

Finally, string valued capabilities, such as el (clear to end of line sequence) are given by the two—
character code, an ‘=", and then a string ending at the next following ¢,’. A delay in milliseconds
may appear anywhere in such a capability, enclosed in $<..> brackets, as in el=\EK$<3>, and
padding characters are supplied by ¢puts to provide this delay. The delay can be either a number,
e.g., ‘20°, or a number followed by an ¥’ i.e., ‘3*’. A ‘*’ indicates that the padding required is
proportional to the number of lines affected by the operation, and the amount given is the per—
affected-unit padding required. (In the case of insert character, the factor is still the number of
lines affected. This is always one unless the terminal has xenl and the software uses it.) When a
“*' is specified, it is sometimes useful to give a delay of the form ‘3.5’ to specify a delay per unit to
tenths of milliseconds. (Only one decimal place is allowed.)

A number of escape sequences are provided in the string valued capabilities for easy encoding of
characters there. Both \E and \e map to an ESCAPE character, “x maps to a control-x for any
appropriate x, and the sequences \n \1 \r \t \b \f \s give a newline, linefeed, return, tab, back-
space, formfeed, and space. Other escapes include \" for *, \\ for \, \, for comma, \: for :, and \0
for null. (\0 will produce \200, which does not terminate a string but behaves as a null character
on most terminals.) Finally, characters may be given as three octal digits after a \.

Sometimes individual capabilities must be commented out. To do this, put a period before the
capability name. For example, see the second ind in the example above.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most effective way to prepare a
terminal description is by imitating the description of a similar terminal in terminfo and to build
up a description gradually, using partial descriptions with v7 to check that they are correct. Be
aware that a very unusual terminal may expose deficiencies in the ability of the terminfo file to
describe it or bugs in vi. To easily test a new terminal description you can set the environment
variable TERMINFO to a pathname of a directory containing the compiled description you are
working on and programs will look there rather than in /fusr/lib/terminfo. To get the padding for
insert line right (if the terminal manufacturer did not document it) a severe test is to edit
/etc/passwd at ‘9600 baud, delete 16 or so lines from the middle of the screen, then hit the ‘u’ key
several times quickly. If the terminal messes up, more padding is usually needed. A similar test
can be used for insert character.

Basic Capabilities

The number of columns on each line for the terminal is given by the cols numeric capability. If
the terminal is a CRT, then the number of lines on the screen is given by the lines capability. If
the terminal wraps around to the beginning of the next line when it reaches the right margin,
then it should have the am capability. If the terminal can clear its screen, leaving the cursor in
the home position, then this is given by the clear string capability. If the terminal overstrikes

Hewlett-Packard -6- July 9, 1985

TERMINFO (5) TERMINFO (5)

(rather than clearing a position when a character is struck over) then it should have the os capa—
bility. If the terminal is a printing terminal, with no soft copy unit, give it both he and os. (os
applies to storage scope terminals, such as TEKTRONIX 4010 series, as well as hard copy and APL
terminals.) If there is a code to move the cursor to the left edge of the current row, give this as
cr. (Normally this will be carriage return, control M.) If there is a code to produce an audible
signal (bell, beep, etc) give this as bel.

If there is a code to move the cursor one position to the left (such as backspace) that capability
should be given as cubl. Similarly, codes to move to the right, up, and down should be given as
cufl, cuul, and cudl. These local cursor motions should not alter the text they pass over, for
example, you would not normally use ‘cufl=’ because the space would erase the character moved
over.

A very important point here is that the local cursor motions encoded in terminfo are undefined at
the left and top edges of a CRT terminal. Programs should never attempt to backspace around
the left edge, unless bw is given, and never attempt to go up locally off the top. In order to scroll
text up, a program will go to the bottom left corner of the screen and send the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and sends the ri (reverse
index) string. The strings ind and ri are undefined when not on their respective corners of the
screen.

Parameterized versions of the scrolling sequences are indn and rin which have the same seman-
tics as ind and ri except that they take one parameter, and scroll that many lines. They are also
undefined except at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text is out-
put, but this does not necessarily apply to a cufl from the last column. The only local motion
which is defined from the left edge is if bw is given, then a cubl from the left edge will move to
the right edge of the previous row. If bw is not given, the effect is undefined. This is useful for
drawing a box around the edge of the screen, for example. If the terminal has switch selectable
automatic margins, the terminfo file usually assumes that this is on; i.e., am. If the terminal has
a command which moves to the first column of the next line, that command can be given as nel

- (newline). It does not matter if the command clears the remainder of the current line, so if the
terminal has no cr and If it may still be possible to craft a working nel out of one or both of
them.

These capabilities suffice to describe hardcopy and glass-tty terminals. Thus the model 33 tele-
type is described as

33 | tty33 | tty | model 33 teletype,
bel="G, cols#72, cr="M, cudl="J, hc, ind="J, os,

while the Lear Siegler ADM-3 is described as

adm3 | 3| 1si adm3,
am, bel="G, clear="Z, cols#80, cr="M, cubi="H, cudi="J,
ind="J, lines#24,

Parameterized Strings

Cursor addressing and other strings requiring parameters in the terminal are described by a
parameterized string capability, with printf(3S) like escapes %x in it. For example, to address
the cursor, the cup capability is given, using two parameters: the row and column to address to.
(Rows and columns are numbered from zero and refer to the physical screen visible to the user,
not to any unseen memory.) If the terminal has memory relative cursor addressing, that can be
indicated by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate it. Typically a
sequence will push one of the parameters onto the stack and then print it in some format. Often
more complex operations are necessary.

Hewlett—Packard -7- July 9, 1985

TERMINFO (5) TERMINFO (5)

The % encodings have the following meanings:

%% outputs ‘%’

%d print pop() as in printf
%2d print pop() like %2d
%3d print pop() like %3d
%02d

%03d as in printf

%c print pop() gives %c

%s print pop() gives %s
%p[1-9] push ith parm

%P|a-z] set variable [a-z] to pop()
%gla-z] get variable [a—z] and push it
%’c’ char constant ¢

%{nn} integer constant nn

%o+ %- %* %/ %m
arithmetic (%m is mod): push(pop() op pop())

%& %1 %" bit operations: push(pop() op pop())

%= %> %< logical operations: push(pop() op pop())

%! %~ unary operations push(op pop())

%i add 1 to first two parms (for ANSI terminals)

%? expr %t thenpart %e elsepart %;

if-then—else, %e elsepart is optional.

else-if’s are possible ala Algol 68:

%7 ¢y %t l:il %e ¢y %t by %e cg %t by %e ¢, %t by %e %;
¢; are conditions, bi are bodies.

Binary operations are in postfix form with the operands in the usual order. That is, to get x-5
one would use "%gx%{5}%".

Consider the HP2645, which, to get to row 3 and column 12, needs to be sent \E&a12c03Y pad—
ded for 6 milliseconds. Note that the order of the rows and columns is inverted here, and that the
row and column are printed as two digits. Thus its cup capability is
cup=6\E&%p2%2dc%pl1%2dY.

The Microterm ACT-IV needs the current row and column sent preceded by a “T, with the row
and column simply encoded in binary, cup="T%pl1%c%p2%c. Terminals which use %c need to be
able to backspace the cursor (cubl), and to move the cursor up one line on the screen (cuul).
This is necessary because it is not always safe to transmit \n "D and \r, as the system may
change or discard them. (The library routines dealing with terminfo set tty modes so that tabs
are never expanded, so \t is safe to send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus
cup=\E=%p1%’ '%+%c%p2%’ '%-+%c. After sending ‘\E=’, this pushes the first parameter,
pushes the ASCII value for a space (32), adds them (pushing the sum on the stack in place of the
two previous values) and outputs that value as a character. Then the same is done for the second
parameter. More complex arithmetic is possible using the stack.

If the terminal has row or column absolute cursor addressing, these can be given as single param-
eter capabilities hpa (horizontal position absolute) and vpa (vertical position absolute). Some-
times these are shorter than the more general two parameter sequence (as with the hp2645) and
can be used in preference to cup . If there are parameterized local motions (e.g., move n spaces to
the right) these can be given as cud, cub, cuf, and cuu with a single parameter indicating how
many spaces to move. These are primarily useful if the terminal does not have cup, such as the

Hewlett-Packard -8- July 9, 1985

TERMINFO (5) TERMINFO (5)

TEKTRONIX 4025.
Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left corner of screen) then this
can be given as home; similarly a fast way of getting to the lower left-hand corner can be given
as 1l; this may involve going up with cuul from the home position, but a program should never
do this itself (unless 11 does) because it can make no assumption about the effect of moving up
from the home position. Note that the home position is the same as addressing to (0,0): to the
top left corner of the screen, not of memory. (Thus, the \EH sequence on HP terminals cannot be
used for home.)

Area Clears

If the terminal can clear from the current position to the end of the line, leaving the cursor where
it is, this should be given as el. If the terminal can clear from the current position to the end of
the display, then this should be given as ed. Ed is only defined from the first column of a line.
(Thus, it can be simulated by a request to delete a large number of lines, if a true ed is not avail-
able.)

Insert/delete line

If the terminal can open a new blank line before the line where the cursor is, this should be given
as il1; this is done only from the first position of a line. The cursor must then appear on the
newly blank line. If the terminal can delete the line which the cursor is on, then this should be
given as dll; this is done only from the first position on the line to be deleted. Versions of il1
and dl1 which take a single parameter and insert or delete that many lines can be given as il and
dl. If the terminal has a settable scrolling region (like the vt100) the command to set this can be
described with the csr capability, which takes two parameters: the top and bottom lines of the
scrolling region. The cursor position is, alas, undefined after using this command. It is possible to
get the effect of insert or delete line using this command - the sc and rc (save and restore cursor)
commands are also useful. Inserting lines at the top or bottom of the screen can also be done
using ri or ind on many terminals without a true insert/delete line, and is often faster even on
terminals with those features.

If the terminal has the ability to define a window as part of memory, which all commands affect,
it should be given as the parameterized string wind. The four parameters are the starting and
ending lines in memory and the starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be given; if
display memory can be retained below, then db should be given. These indicate that deleting a
line or scrolling may bring non-blank lines up from below or that scrolling back with ri may bring
down non-blank lines.

Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete character which
can be described using terminfo. The most common insert/delete character operations affect only
the characters on the current line and shift characters off the end of the line rigidly. Other termi-
nals, such as the Concept 100 and the Perkin Elmer Owl, make a distinction between typed and
untyped blanks on the screen, shifting upon an insert or delete only to an untyped blank on the
screen which is either eliminated, or expanded to two untyped blanks. You can determine the
kind of terminal you have by clearing the screen and then typing text separated by cursor
motions. Type abc def using local cursor motions (not spaces) between the abc and the def.
Then position the cursor before the abc and put the terminal in insert mode. If typing characters
causes the rest of the line to shift rigidly and characters to fall off the end, then your terminal
does not distinguish between blanks and untyped positions. If the abc shifts over to the def which
then move together around the end of the current line and onto the next as you insert, you have
the second type of terminal, and should give the capability in, which stands for insert null. While
these are two logically separate attributes (one line vs. multiline insert mode, and special

Hewlett-Packard -9- July 9, 1985

TERMINFO (5) TERMINFO (5)

treatment of untyped spaces) we have seen no terminals whose insert mode cannot be described
with the single attribute.

Terminfo can describe both terminals which have an insert mode, and terminals which send a
simple sequence to open a blank position on the current line. Give as smir the sequence to get
into insert mode. Give as rmir the sequence to leave insert mode. Now give as ichl any
sequence needed to be sent just before sending the character to be inserted. Most terminals with
a true insert mode will not give ichl; terminals which send a sequence to open a screen position
should give it here. (If your terminal has both, insert mode is usually preferable to ichl. Do not
give both unless the terminal actually requires both to be used in combination.) If post insert
padding is needed, give this as a number of milliseconds in ip (a string option). Any other
sequence which may need to be sent after an insert of a single character may also be given in ip.
If your terminal needs both to be placed into an ‘insert mode’ and a special code to precede each
inserted character, then both smir/rmir and ichl can be given, and both will be used. The ich
capability, with one parameter, n, will repeat the effects of ich1 n times.

It is occasionally necessary to move around while in insert mode to delete characters on the same
line (e.g., if there is a tab after the insertion position). If your terminal allows motion while in
insert mode you can give the capability mir to speed up inserting in this case. Omitting mir will
affect only speed. Some terminals (notably Datamedia’s) must not have mir because of the way
their insert mode works.

Finally, you can specify dchl to delete a single character, dch with one parameter, n, to delete n
characters, and delete mode by giving smdc and rmdec to enter and exit delete mode (any mode
the terminal needs to be placed in for dch1l to work).

A command to erase n characters (equivalent to outputting n blanks without moving the cursor)
can be given as ech with one parameter.

Highlighting, Underlining, and Visible Bells

If your terminal has one or more kinds of display attributes, these can be represented in a number
of different ways. You should choose one display form as standout mode, representing a good,
high contrast, easy-on-the-eyes, format for highlighting error messages and other attention
getters. (If you have a choice, reverse video plus half-bright is good, or reverse video alone.) The
sequences to enter and exit standout mode are given as smso and rmso, respectively. If the code
to change into or out of standout mode leaves one or even two blank spaces on the screen, as the
TVI 912 and Teleray 1061 do, then xme should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as smul and rmul respectively. If
the terminal has a code to underline the current character and move the cursor one space to the
right, such as the Microterm Mime, this can be given as uc.

Other capabilities to enter various highlighting modes include blink (blinking) bold (bold or
extra bright) dim (dim or half-bright) invis (blanking or invisible text) prot (protected) rev
(reverse video) sgr0 (turn off all attribute modes) smacs (enter alternate character set mode) and
rmacs (exit alternate character set mode). Turning on any of these modes singly may or may
not turn off other modes.

If there is a sequence to set arbitrary combinations of modes, this should be given as sgr (set
attributes), taking 9 parameters. Each parameter is either 0 or 1, as the corresponding attribute
is on or off. The 9 parameters are, in order: standout, underline, reverse, blink, dim, bold, blank,
protect, alternate character set. Not all modes need be supported by sgr, only those for which
corresponding separate attribute commands exist.

Terminals with the “magic cookie” glitch (xmc) deposit special “cookies” when they receive
mode-setting sequences, which affect the display algorithm rather than having extra bits for each
character. Some terminals, such as the HP 2621, automatically leave standout mode when they
move to a new line or the cursor is addressed. Programs using standout mode should exit stan—
dout mode before moving the cursor or sending a newline, unless the msgr capability, asserting

Hewlett-Packard -10 - July 9, 1985

TERMINFO (5) TERMINFO (5)

that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly -(a bell replacement)
then this can be given as flash; it must not move the cursor.

If the cursor needs to be made more visible than normal when it is not on the bottom line (to
make, for example, a non-blinking underline into an easier to find block or blinking underline)
give this sequence as cvvis. If there is a way to make the cursor completely invisible, give that as
civis. The capability cnorm should be given which undoes the effects of both of these modes.

If the terminal needs to be in a special mode when running a program that uses these capabilities,
the codes to enter and exit this mode can be given as smcup and rmcup. This arises, for exam-
ple, from terminals like the Concept with more than one page of memory. If the terminal has
only memory relative cursor addressing and not screen relative cursor addressing, a one screen—
sized window must be fixed into the terminal for cursor addressing to work properly. This is also
used for the TEKTRONIX 4025, where smcup sets the command character to be the one used by
terminfo.

If your terminal correctly generates underlined characters (with no special codes needed) even
though it does not overstrike, then you should give the capability ul. If overstrikes are erasable
with a blank, then this should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are pressed, this information can
be given. Note that it is not possible to handle terminals where the keypad only works in local
(this applies, for example, to the unshifted HP 2621 keys). If the keypad can be set to transmit or
not transmit, give these codes as smkx and rmkx. Otherwise the keypad is assumed to always
transmit. The codes sent by the left arrow, right arrow, up arrow, down arrow, and home keys
can be given as kcubl, kcufl, kcuul, kcudl, and khome respectively. If there are function
keys such as 0, fl, ..., f10, the codes they send can be given as kf0, kfl, ..., kf10. If these keys
have labels other than the default f0 through f10, the labels can be given as 1f0, If1, ..., 1f10.
The codes transmitted by certain other special keys can be given: kll (home down), kbs (back—
space), ktbe (clear all tabs), kctab (clear the tab stop in this column), kelr (clear screen or erase
key), kdchl (delete character), kdll (delete line), krmir (exit insert mode), kel (clear to end of
line), ked (clear to end of screen), kichl (insert character or enter insert mode), kill (insert line),
knp (next page), kpp (previous page), kind (scroll forward/down), kri (scroll backward/up),
khts (set a tab stop in this column). In addition, if the keypad has a 3 by 3 array of keys includ-
ing the four arrow keys, the other five keys can be given as kal, ka3, kb2, kcl, and kc3. These
keys are useful when the effects of a 3 by 3 directional pad are needed.

Tabs and Initialization

If the terminal has hardware tabs, the command to advance to the next tab stop can be given as
ht (usually control I). A “backtab” command which moves leftward to the next tab stop can be
given as cbt. By convention, if the teletype modes indicate that tabs are being expanded by the
computer rather than being sent to the terminal, programs should not use ht or cbt even if they
are present, since the user may not have the tab stops properly set. If the terminal has hardware
tabs which are initially set every n spaces when the terminal is powered up, the numeric parame—
ter it is given, showing the number of spaces the tabs are set to. This is normally used by the
tset command to determine whether to set the mode for hardware tab expansion, and whether to
set the tab stops. If the terminal has tab stops that can be saved in nonvolatile memory, the ter—
minfo description can assume that they are properly set.

Other capabilities include isl, is2, and is3, initialization strings for the terminal, iprog, the path
name of a program to be run to initialize the terminal, and if, the name of a file containing long
initialization strings. These strings are expected to set the terminal into modes consistent with
the rest of the terminfo description. They are normally sent to the terminal, by the tset program,
each time the user logs in. They will be printed in the following order: isl; is2; setting tabs

Hewlett-Packard -11- July 9, 1985

TERMINFO (5) TERMINFO (5)

using tbc and hts; if; running the program iprog; and finally is3. Most initialization is done
with is2. Special terminal modes can be set up without duplicating strings by putting the com-
mon sequences in is2 and special cases in isl and is3. A pair of sequences that does a harder
reset from a totally unknown state can be analogously given as rsl, rs2, rf, and rs3, analogous to
is2 and if. These strings are output by the reset program, which is used when the terminal gets
into a wedged state. Commands are normally placed in rs2 and rf only if they produce annoying
effects on the screen and are not necessary when logging in. For example, the command to set the
vt100 into 80-column mode would normally be part of is2, but it causes an annoying glitch of the
screen and is not normally needed since the terminal is usually already in 80 column mode.

If there are commands to set and clear tab stops, they can be given as tbc (clear all tab stops)
and hts (set a tab stop in the current column of every row). If a more complex sequence is
needed to set the tabs than can be described by this, the sequence can be placed in is2 or if.

Delays

Certain capabilities control padding in the teletype driver. These are primarily needed by hard
copy terminals, and are used by the ¢set program to set teletype modes appropriately. Delays
embedded in the capabilities cr, ind, cub1l, ff, and tab will cause the appropriate delay bits to be
set in the teletype driver. If pb (padding baud rate) is given, these values can be ignored at baud
rates below the value of pb.

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can be given as pad.
Only the first character of the pad string is used.

If the terminal has an extra ‘“‘status line” that is not normally used by software, this fact can be
indicated. If the status line is viewed as an extra line below the bottom line, into which one can
cursor address normally (such as the Heathkit h19’s 25th line, or the 24th line of a vt100 which is
set to a 23-line scrolling region), the capability hs should be given. Special strings to go to the
beginning of the status line and to return from the status line can be given as tsl and fsl. (fsl
must leave the cursor position in the same place it was before tsl. If necessary, the sc and rc
strings can be included in tsl and fsl to get this effect.) The parameter tsl takes one parameter,
which is the column number of the status line the cursor is to be moved to. If escape sequences
and other special commands, such as tab, work while in the status line, the flag eslok can be
given. A string which turns off the status line (or otherwise erases its contents) should be given
as dsl. If the terminal has commands to save and restore the position of the cursor, give them as
sc and rc. The status line is normally assumed to be the same width as the rest of the screen,
e.g., cols. If the status line is a different width (possibly because the terminal does not allow an
entire line to be loaded) the width, in columns, can be indicated with the numeric parameter wsl.

If the terminal can move up or down half a line, this can be indicated with hu (half-line up) and
hd (half-line down). This is primarily useful for superscripts and subscripts on hardcopy termi-
nals. If a hardcopy terminal can eject to the next page (form feed), give this as ff (usually control
L).

If there is a command to repeat a given character a given number of times (to save time transmit—
ting a large number of identical characters) this can be indicated with the parameterized string
rep. The first parameter is the character to be repeated and the second is the number of times to
repeat it. Thus, tparm(repeat_char, 'x’, 10) is the same as ‘xxxxxxxxxX’.

If the terminal has a settable command character, such as the TEKTRONIX 4025, this can be indi—
cated with ecrndch. A prototype command character is chosen which is used in all capabilities.
This character is given in the cmdch capability to identify it. The following convention is sup—
ported on some UNIX systems: The environment is to be searched for a CC variable, and if
found, all occurrences of the prototype character are replaced with the character in the environ-
ment variable.

Hewlett—Packard -12 - July 9, 1985

TERMINFO (5) TERMINFO (5)

Terminal descriptions that do not represent a specific kind of known terminal, such as switch,
dialup, patch, and network, should include the gn (generic) capability so that programs can com-—
plain that they do not know how to talk to the terminal. (This capability does not apply to vir-
tual terminal descriptions for which the escape sequences are known.)

If the terminal uses xon/xoff handshaking for flow control, give xon. Padding information should
still be included so that routines can make better decisions about costs, but actual pad characters
will not be transmitted.

If the terminal has a “meta key” which acts as a shift key, setting the 8th bit of any character
transmitted, this fact can be indicated with km. Otherwise, software will assume that the 8th bit
is parity and it will usually be cleared. If strings exist to turn this ‘“‘meta mode” on and off, they
can be given as ssmm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the number of lines of
memory can be indicated with lm. A value of lm#0 indicates that the number of lines is not
fixed, but that there is still more memory than fits on the screen.

If the terminal is one of those supported by the UNIX virtual terminal protocol, the terminal
number can be given as vt.

Media copy strings which control an auxiliary printer connected to the terminal can be given as
mcOQ: print the contents of the screen, me4: turn off the printer, and me5: turn on the printer.
When the printer is on, all text sent to the terminal will be sent to the printer. It is undefined
whether the text is also displayed on the terminal screen when the printer is on. A variation
me5p takes one parameter, and leaves the printer on for as many characters as the value of the
parameter, then turns the printer off. The parameter should not exceed 255. All text, including
mc4, is transparently passed to the printer while an mc5p is in effect.

Strings to program function keys can be given as pfkey, pfloc, and pfx. Each of these strings
takes two parameters: the function key number to program (from 0 to 10) and the string to pro—
gram it with. Function key numbers out of this range may program undefined keys in a terminal
dependent manner. The difference between the capabilities is that pfkey causes pressing the
given key to be the same as the user typing the given string; pfloc causes the string to be exe-
cuted by the terminal in local; and pfx causes the string to be transmitted to the computer.

Glitches and Braindamage
Hazeltine terminals, which do not allow ‘™’ characters to be displayed should indicate hz.

Terminals which ignore a linefeed immediately after an am wrap, such as the Concept and vt100,
should indicate xenl.

If el is required to get rid of standout (instead of merely writing normal text on top of it), xhp
should be given.

Teleray terminals, where tabs turn all characters moved over to blanks, should indicate xt (des—
tructive tabs). This glitch is also taken to mean that it is not possible to position the cursor on
top of a ““magic cookie”, that to erase standout mode it is instead necessary to use delete and
insert line.

The Beehive Superbee, which is unable to correctly transmit the escape or control C characters,
has xsb, indicating that the f1 key is used for escape and f2 for control C. (Only certain Super—
bees have this problem, depending on the ROM.)

Other specific terminal problems may be corrected by adding more capabilities of the form xz.
Similar Terminals

If there are two very similar terminals, one can be defined as being just like the other with certain
exceptions. The string capability use can be given with the name of the similar terminal. The
capabilities given before use override those in the terminal type invoked by use. A capability can
be cancelled by placing xx@ to the left of the capability definition, where xx is the capability.

Hewlett-Packard -13- July 9, 1985

TERMINFO (5) TERMINFO (5)

For example, the entry
2621-nl, smkx@, rmkx@, use=2621,
defines a 2621-nl that does not have the smkx or rmkx capabilities, and hence does not turn on

the function key labels when in visual mode. This is useful for different modes for a terminal, or
for different user preferences.

FILES
/Jusr/lib/terminfo/?/* files containing terminal descriptions

SEE ALSO
tic(1M), curses(3X), printf(3S), term(5).

Hewlett-Packard -14- July 9, 1985

TTYTYPE(5) TTYTYPE(5)

NAME

ttytype - data base of terminal types by port
SYNOPSIS

/etc/ttytype
HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY

Origin: UCB
Remarks: Not supported on the Integral Personal Computer.
DESCRIPTION

Ttytype is a database containing, for each tty port on the system, the kind of terminal that is

attached to that port. There is one line per port, containing the terminal kind (as a name listed

in terminfo(5)), a space, and the name of the tty, less the initial “/dev/”. For example, for an HP

2622 terminal on tty02:

2622 tty02

This information is read by tset(1) and by login(1) to initialize the TERM variable at login time.
SEE ALSO

login(1), tset(1).

BUGS
Some lines are only known as "dialup” or “plugboard”.

Hewlett—Packard -1- July 9, 1985

UTMP (5) UTMP (5)

NAME
utmp, wtmp, btmp - utmp, wtmp, btmp entry format

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V and UCB

SYNOPSIS
#include <sys/types.h>
#include <utmp.h>

DESCRIPTION
These files, which hold user and accounting information for such commands as last(1), who(1),
write(1), and login(1), have the following structure as defined by <utmp.h>:

#define UTMP_FILE ” [etc/utmp”
#define WITMP_FILE ”[etc/wtmp”

#define ut_name ut__user

struct utmp

{
char ut_user(8]; /* User login name %/
char ut_id[4]; /* [etc/inittab id (usually line #) */
char ut_line[12]; /* device name (console, Inxx) */
short ut_pid; /* process id */
short ut__type; /* type of entry %/
struct exit_status {
short e__termination; /* Process termination status x/
short e__exit; /* Process exit status %/
} ut_exit; /* The exit status of a process
* marked as DEAD_PROCESS. */
time_t ut_time; /* time entry was made */
I
/* Definitions for ut_type */
#define EMPTY 0
#define RUN_LVL 1
#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4
#define INIT_PROCESS 5 /* Process spawned by “init” %/
#define LOGIN_PROCESS 6 /% A "getty” process waiting for login */
#define USER_PROCESS 7 /* A user process */
#define DEAD_PROCESS 8
#define ACCOUNTING 9
#define UTMAXTYPE ACCOUNTING /* Largest legal value of ut_type */

Hewlett-Packard -1- July 9, 1985

UTMP (5) UTMP (5)

/* Special strings or formats used in the "ut_line” field when */
/* accounting for something other than a process #*/

/* No string for the ut_line field can be more than 11 chars + */
/* aNULL in length */

#define RUNLVL_MSG “run-level %c”
#define BOOT_MSG “system boot”
#define OTIME_MSG "old time”
#define NTIME_MSG "new time”

Ut_name is valid for login entries only; otherwise the first character is null. There are logout
entries in both utmp and wtmp. In utmp, these entries refer to terminals that are not
currently logged in; in wtmp, they record history. File btmp contains bad login entries for each
invalid logon attempt.

Note that wtmp and btmp tend to grow.without bound, and should be checked regularly.
Information that is no longer useful should be removed periodically to prevent it from becoming
too large.
FILES
/ete/utmp
/etc/wtmp
/etc/btmp
SEE ALSO
acctcon(1M), fwtmp(1m), last(1), lastb(1), login(1), who(1), write(1), getut(3C).

Hewlett—Packard -2- July 9, 1985

INTRO (7) INTRO (7)

NAME
intro - introduction to miscellany

DESCRIPTION
This section describes miscellaneous facilities such as macro packages, character set tables, etc.

Hewlett—Packard -1- July 9, 1985

ASCII(7) ASCII(7)

NAME
ascii - map of ASCII character set

SYNOPSIS
cat /usr/pub/ascii

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: System IIT

DESCRIPTION
Ascii is a map of the ASCII character set, giving both octal and hexadecimal equivalents of each
character, to be printed as needed. It contains:

1000 nul 1001 soh 1002 stx |003 etx 1004 eot (005 enq 1006 ack 1007 bel
1010 bs 1011 ht 1012 nl 1013 vt 1014 np (015 cr |016 so |017 si
1020 dle 1021 dcl 1022 dc2 1023 dc3 1024 dc4 1025 nak 1026 syn |027 etb

|
|
|
1030 can [031 em 1032 sub 1033 esc 1034 fs 1035 gs 1036 rs |037 us |
1040 sp 1041 ! 1042 " 1043 # 1044 $§ 1045 % 1046 & 1047 - |
1050 (1051) 1052 * 1053 + 1054 , (055 -]056 . 1057 /|
1060 0 1061 1 1062 2 1063 3 1064 4 10655 1066 6 1067 7 |
1070 8 1071 9 1072 : 1073 ; 1074 < 1075 = 1076 > 1077 ? |
1100 @ 101 A (102 B 1103 C 1104 D 105 E 106 F 1107 G |
1110 H 1111 I 1112 J 1113 K 1114 L 1115 M 1116 N 1117 O |
1120 P (121 Q 1122 R 1123 S 1124 T 1125U 126 V |127TW |
1130 X 1131Y 1132 Z 1133 [1134\ 1135] 1136 ~ 1137 _ |
1140 ~ 1141 a 1142 b 1143 ¢ 1144 d 1145 e 1146 f 1147 g |
1150 h 1151 i 1152 j 1153 k 1154 1 1155 m 1156 n 1157 o |
1160 p 1161 q 1162 r 1163 s 1164 t 1165 u 1166 v 1167 w |
1170 x 1171y 1172 z 1173 { 1174 | 1175 } 1176 = 1177 del |
| 00 nul | 01 soh | 02 stx | 03 etx | 04 eot | 05 enq | 06 ack | 07 bel |
| 08 bs | 09 ht | Oanl | Ob vt | Ocnp | Od cr | Oe so | Of si |
1 10 dle | 11 del | 12 de2 | 13 dec3 | 14 dc4 | 15 nak | 16 syn | 17 etb |
| 18 can | 19 em | 1la sub | 1b esc | 1c fs | 1d gs | le rs | 1f us |
1'20sp 21! 122" | 23# 1248% 125% |126& | 27 - |
128 (129) 12 * | 2b+ |2, |2d- | 2. 1 2f /|
1380 1311 1322 1333 1344 135 1366 377 |
1388 139 13: 13b; [3< |3d= 13> 137 |
1 40@ | 41 A | 42B | 43C | 44D | 45E | 46 F 1 47 G |
| 48 H | 491 | 4a J | 4bK | 4c L 1 4dM | 4e N | 4f 0 |
I 50P 151Q |52R 1538 154T |5U |5V | 57W |
I 58X 159Y 15 2Z |5 [|5\ 5] 15" 15 _ |
160~ 161a |62b |63c |164d |65e | 66f | 67¢g |
| 68h 1691 16aj | 6bk | 6c1 | 6dm | 6en | 6f o |
1 70p 1 71q 1 72r 1 73s 174t 17 u |76v | 77Tw |
178 x 179y 1 7az |7 { 1 7c1 17d} 1 7e” | 7f del |
FILES
/usr/pub/ascii

Hewlett-Packard -1- July 9, 1985

ENVIRON (7) ENVIRON (7)

NAME

environ - user environment

HP-UX COMPATIBILITY

Level: HP-UX/NUCLEUS
Origin: System III

DESCRIPTION

An array of strings called the “‘environment” is made available by ezec(2) when a process begins.
By convention, these strings have the form ‘“name=value”. The following names are used by
various commands:

PATH The sequence of directory prefixes that sh(1), time(1), nice(1), nohup(1), etc., apply in
searching for a file known by an incomplete path name. The prefixes are separated by
colons (:). Login(1) sets PATH=:/bin:/usr/bin.

HOME Name of the user’s login directory, set by login(1) from the password file passwd(5).

TERM The kind of terminal for which output is to be prepared. This information is used by
commands (such as mm(1) or vi(1)) that are able to exploit special capabilities of that
terminal.

TZ Time zone information. The minimum format is tznamediff where tzname is an “alpha—
betic” string giving the time zone name or abbreviation, and diff is the (positive or nega-
tive, and possibly fractional) difference in hours from GMT. NOTE: west is positive, east
is negative. If a summer time zone adjustment (such as Daylight Savings in the US) is to
be applied the format is tznamediffidstzname where dstzname is the name of the
“Daylight Savings” time zone.

LANG Language selection. This is one of the names listed in langid(7). It is used to select the
character set, lexical order, up and down shift tables, and other information which varies
from one area to another.

Further names may be placed in the environment by the ezport command and ‘“‘name=value”
arguments in sh(1), by the setenv command in csh(1), by the env(1) command, or by ezec(2). It
is unwise to conflict with certain shell variables that are frequently exported by .profile files:
MAIL, PS1, PS2, IFS.

SEE ALSO

env(1), login(1), sh(1), exec(2), ctime(3C), getenv(3C), profile(5), tztab(5), hpnls(7), term(7).

Hewlett—Packard -1- July 9, 1985

FCNTL(7) FCNTL(7)

NAME

fentl - file control options
SYNOPSIS

#include <fcntl.h>
HP-UX COMPATIBILITY

Level:
Basic calls: HP-UX/RUN ONLY

Real time extensions: HP-UX/STANDARD - Real Time
Origin: System III, System V, UCB, and HP

DESCRIPTION
The fentl(2) function provides for control over open files. This include file describes requests and
arguments to fentl and open(2).

/* Flag values accessible to open(2) and fentl(2) */
/* (The first three can only be set by open) */

#tdefine O_RDONLY 0
#tdefine O_WRONLY 1
#define O_RDWR 2

#define O_NDELAY 04 /* Non-blocking I/O %/

#tdefine O_APPEND 010 /* append (writes guaranteed at the end) %/
#tdefine O_SYNCIO 0100000 /* Do write through caching %/

/* Flag values accessible only to open(2) %/

#tdefine O_CREAT 00400 /* Open with file create (uses third open arg)x/
#define O_TRUNC 01000 /* Open with truncation */

#define O_EXCL 02000 /* Exclusive open */

/* fentl(2) requests */

#define F_DUPFD 0 /* Duplicate fildes x/
#define F_GETFD 1 /* Get fildes flags */
#define F_SETFD 2 /* Set fildes flags */
#define F_GETFL 3 /* Get file flags */
#define F_SETFL 4 /* Set file flags =/

SEE ALSO
fentl(2), open(2).

Hewlett-Packard -1- July 9, 1985

HIER (7) HIER (7)

NAME
hier - file system hierarchy

DESCRIPTION
The following outline gives a quick tour through a representative HP-UX directory hierarchy.
Some of the directories listed only appear with HP-UX versions which support certain optional
commands or packages which use those directories. Some HP-UX versions add special directories
not shown here.

/ Root directory.

/bin Frequently-used commands and those required to boot, restore, recover, and/or repair
the system.

/dev Special files (device files); see mknod(8).

/ete System administrative commands and configuration files.

/ete/newconfig

New (updated) versions of customizable (localizable) configuration files and shell
scripts. Shipped here so as not to overwrite current versions. Copied to regular loca—
tions for newly installed systems. Administrators may wish to keep them around for
later reference.

/lib Frequently—used object code libraries and related utilities.

/lost+found
For connecting detached files; for use by fsck(8).

/tmp Place to put temporary files (those normally with short lifetimes and which may be
removed without notice).

/users User home directories; sometimes immediate, sometimes at lower levels.

/users/guest

Default home directory for user “guest”; see passwd(5). Directory exists for novice
users; you may wish to remove it.

Jusr Less—frequently-used commands and other miscellaneous things; historically, often a
separate, mounted volume.

/usr/adm System-administrative data files.

Jusr/bin Less—frequently—used commands and those not required to boot, restore, recover,
and/or repair the system.

/usr/contrib
User—contributed (unsupported, internal) commands, files, etc. Files under this direc-
tory come from outside the local site or organization, e.g. from users groups, HP ser-
vice engineers, etc. See /usr/local for local-site commands and files.

/usr/contrib/bin
User-contributed commands.

/usr/contrib/games
User—contributed games.

/usr/contrib/include
User-contributed include files. To include them, you must (in C) give a complete
pathname, for example, #include ”/usr/contrib/include/symtab.h”.

/usr/contrib/lib
User-contributed libraries.

/usr/contrib/man/cat[1-8]
User—contributed manual entries, post—nroff form.

Hewlett—Packard -1- July 9, 1985

HIER (7) HIER (7)

/usr/contrib/man/man[1-8]
User—contributed manual entries, pre-nroff form.
/Jusr/contrib/man/$LANG/cat[1-8]
User—contributed manual entries, formatted form for installed native languages. The
LANG environment variable may take on values given in the /usr/lib/nls/config
table.
Jusr/contrib/man/$LANG /man(1-8]
User-contributed manual entries, unformatted form for installed native languages.
/usr/include
High-level C-language header files (shared definitions).
/usr/include/sys
Low-level (kernel-related) C-language header files.
Jusr/lib Less-frequently-used object code libraries, related utilities, miscellaneous data files,
ete.
/Jusr/lib/acct
Certain system-administrative commands.
Jusr/lib/cron
For cron(1) and at(1) scheduling information.
/usr/lib/graphics/c
Device-independent Graphics Library (DGL) special C-language include files.
Optional on some systems.
/usr/lib/graphics/demos
DGL demonstration software.
/usr/lib/graphics/fortran
DGL special FORTRAN-language include files.
Jusr/lib/graphics/pascal
DGL special Pascal-language include files.
Jusr/lib/help
Data files for help(1).
Jusr/lib/lex
Data files for lez(1).
/usr/lib/macros
Macro definition packages for nroff(1).
/usr/lib/nls
native language support
/usr/lib/nls/config
correspondence between integer language id and name
/Jusr/lib/nls/$LANG
Language definition (Character Set Support, Local Customs, and Messages) for
installed native languages. The LANG environment variable may take on values given
in the /usr/lib/nls/config table.
Jusr/lib/spell
Data files for spell(1).

/Jusr/lib/tabset
Data files to set tabstops.

Hewlett—-Packard -2- July 9, 1985

HIER (7) HIER (7)

/Jusr/lib/term

Terminal initialization files.
/usr/lib/tmac

Macro definition packages for nroff(1).

/usr/lib/uucp(/#]
Commands, configuration files, and working directories for uucp(1).

/usr/local Site-local commands, files, etc. Files under this directory come from inside the local
site or organization. See /usr/contrib for non-local unsupported commands and files.
/usr/local/bin
Site-local commands.

Jusr/local/games
Site-local games.

/Jusr/local/include
Site-local include files. To include them, you must (in C) give a complete pathname,
for example, #include “/usr/local/include/symtab.h”.

/Jusr/local/lib
Site-local libraries.
/usr/local/man/cat[1-8]
Site-local manual entries, post-nroff form.
/usr/local/man/man(1-8]
Site-local manual entries, pre-nroff form.
/usr/local/man/$LANG /cat[1-8]
Site-local manual entries, unformatted form for installed native languages. The LANG
environment variable may take on values given in the /usr/lib/nls/config table.

/usr/local/man/$LANG/man[1-8]
Site-local manual entries, formatted form for installed native languages.
/usr/mail User mailboxes.
/usr/man On-line documentation.
/usr/man/cat[1-8]
Optional formatted (post-nroff) versions of on-line documentation for use by man(1).
/usr/man/man[1-8]
Unformatted (pre-nroff) versions of on-line documentation for use by man(1).

/usr/man/$LANG
On-line documentation for installed native languages. The LANG environment vari—
able may take on values given in the /usr/lib/nls/config table.

/Jusr/man/$LANG/cat[1-8]
Formatted native language versions of on-line documentation for use by man(1).

/usr/man/$LANG /man(1-8]
Unformatted native language versions of on-line documentation for use by man(1).

/usr/news Local-system news articles for news(1).

/usr /preserve
Place where ez(1) and vi(1) save lost edit sessions until recovered.

Jusr/spool Spooled (queued) files for various programs.

Jusr/spool/cron
Spooled jobs for cron(1) and at(1).

Hewlett—Packard -3- July 9, 1985 |

HIER(7) HIER.(7)

/usr/spool/cron/atjobs
Spooled jobs for at(1).

/Jusr/spool/lp
Control and working files for lp(1).

/usr/spool/Ip/class
Printer class definition files.

/usr/spool/lp/interface
Printer interface shell scripts.

/usr/spool/lp/member
Printer class member definition files.
/Jusr/spool/Ip/request
Spool directories for each logical destination.
/usr/spool /uucp
Queued work, lockfiles, logfiles, status files, and other files for uucp(1).
/usr/spool /uucppublic[/#]
Publicly-accessible directory for use with uucp(1).

Jusr/src Source files. Only present on HP-UX implementations which support source.

/Jusr/sre/cmd/*
Source for commands. Simple command sources reside at the top level. Subdirectories
are named after specific commands, e.g. /usr/src/emd/cc, and contain the source for
multi-file or otherwise complicated commands. Directory structure below here
depends on the individual command; see the associated makefiles.

/Jusr/src/games/*
Source for games. Simple game sources reside at the top level. Subdirectories are
named after specific games, e.g. /usr/src/games/master, and contain the source for
multi-—file or otherwise complicated games. Directory structure below here depends on
the individual game; see the associated makefiles.

Jusr/src/head

Include files which are copied into fusr/include/*.
/Jusr/src/lib

Source for libraries, in many subdirectories.
Jusr/src/lib/libF77

Source for FORTRAN-77 miscellaneous (mostly math) libraries.
Jusr/sre/lib/1ibI77

Source for FORTRAN-77 I/O libraries.
/Jusr/src/lib/libPW

Source for Programmer’s Workbench libraries.
Jusr/sre/lib/libe

Source for standard C libraries.
Jusr/sre/lib/libeurses/*

Source for curses (cursor control) libraries.
/usr/sre/lib/libl

Source for lex(1) libraries.
/Jusr/sre/lib/libm

Source for C math libraries.

Hewlett—-Packard -4 - July 9, 1985

HIER (7) HIER (7)

/Jusr/sre/lib/liby
Source for yacc(1) libraries.

Jusr/tmp Alternate place to put temporary files; usually used when there may be very many of
them or if they will be large.

SEE ALSO
Is(1), find(1), grep(1), whereis(1), hpnls(7).

HARDWARE DEPENDENCIES
Series 500 systems support shared libraries loaded by the kernel at powerup time. They reside in
the directory /etc/ssltbs.

Some directories include commands or files not supported on all HP-UX implementations.

Hewlett-Packard -5- July 9, 1985

HPNLS(7)

NAME

HPNLS(7)

hpnls - HP Native Language Support (NLS) Model

SYNOPSIS

Is /usr/lib/nls/*
HP-UX COMPATIBILITY

Level:
Origin:
DESCRIPTION

HP-UX/STANDARD
HP

The HP Native Language Support (NLS) model includes several capabilities that reduce or elim—
inate the barriers that would otherwise make HP-UX difficult to use in a non-English language.
The three main categories, Character Set Support, Local Customs, and Messages, are subdivided
into smaller categories in order to adequately reflect the extent of the Native Language Support.

CHARACTER SET SUPPORT -
A major NLS objective is to provide capabilities for adapting character sequences to local
language needs.

CHARACTER CODE SIZE -
The length of the character code governs the number of distinct characters that can be
included in the character set.

7-BIT - The ASCII character set consists of 33 control characters including DEL, space, and

94 printable characters. (See ascii(7).) This is sufficient to span the Latin alphabet,
upper and lowercase, plus punctuation and special symbols. Seven bits of informa-—
tion is sufficient to distinguish the characters in such a set.

8-BIT - The use of an 8 bit character code allows 67 control codes, space, and 188 printable

characters. In the case of European characters, this provides sufficient space for
accented vowels, consonants with special forms, and other special symbols. (See
roman8(7)). This is also sufficient to hold the phonetic Japanese character set Kata—
kana. (See kana8(7).)

16-BIT -

A number of languages have very large character sets that require more than the
188 printable characters provided by the 8-bit character codes. Sixteen-bit charac—
ter codes are available for these languages. To simplify processing, 16-bit printable
characters are formed from pairs of 8-bit printable characters (neither byte may
contain a control code or a space). This allows representation of up to 35344 char-
acters.

CHARACTER TYPING -
Character processing which depends on character type must take into account the character
type changes that vary with the character set being used. For example, an alphabetic char-
acter in the ROMANS character set may align with a punctuation character in the KANAS

set.

SHIFTING -
While the ROMANS character set has uppercase and lowercase for most alphabetic charac—
ters, some languages discard accents when characters are shifted to uppercase. Other alpha—
betic characters may not be shifted at all, when there is no notion of “case” in the underly—
ing language.

COLLATING -
The ASCII collation order, while generally tolerated, is not adequate for American diction—
ary usage. Different languages sort characters from the ROMANS set in different orders.
Some languages require that character pairs, such as “ch” and “11” in Spanish, be sorted as
single characters. Ideographic character sets may have multiple orderings. For example,

Hewlett—Packard

- July 9, 1985

HPNLS(7) HPNLS(7)

Japanese kanjis may be sorted in phonetic order; in a different order based on the number of
strokes in the ideogram; or according, first, to the radical (root) of the character and,
second, to the number of strokes added to the radical.

DIRECTIONALITY -
The assumption that displayed text goes from left to right does not hold for all languages.
Some Middle Eastern languages go from right to left. Far Eastern languages usually use
vertical columns, starting from the right.

CODING SCHEME CONSIDERATIONS -

Although most HP supported 8-bit character sets preserve the ASCII codes in the range of 0
to 127, 16-bit character sets may use these byte values in 2-byte characters. Software that
assigns special meaning to bytes (metacharacters) in this range must distinguish between
1-byte and 2-byte characters. In multilingual environments, standard escape code sequences
are used to indicate change to alternate character sets. Since these sequences are not usu-
ally printed or displayed, the number of characters output is usually less than the number of
bytes in the sequence. Any software that must locate a character within a sequence must
accommodate this.

LOCAL CUSTOMS -
Some aspects of Native Language Support relate more to local customs of a particular geographic
location than to the characters used to write the language.

REPRESENTATION OF NUMBERS -
The character used to denote the radix of a decimal number varies for different
regions. Similarly the use of a “thousands” indicator or grouping of (usually three)
digits may vary with local custom.

CURRENCY REPRESENTATION -
The symbol for currency varies from country to country. The symbol may either
precede or follow the numeric value. Some currencies allow decimal fractions while
others use alternate methods of representing smaller monetary values.

DATE AND TIME REPRESENTATION -
Month and weekday names vary with language (if they are not omitted entirely).
Abbreviations may be other than three characters, or may not be allowed at all.
Even when a strictly numeric representation is used, the order of year, month, and
day as well as the delimiters which separate them is not universal.

DATE AND TIME ADJUSTMENTS -
The HP-UX system clock runs on Greenwich Mean Time (GMT). Corrections to
local time zones consist of adding or subtracting whole or fractional hours from
GMT. The Gregorian calendar is most common, but some locales use different
methods for determining meridian day and year; usually based on seasonal, astro-
nomical, or historical events.

MESSAGES -
The need for messages to be readable by users is perhaps the most significant justification for
implementing Native Language Support.
MESSAGE CONTENT -
Error messages, prompts, expected responses, and mnemonic command names
should be based on the user’s native language.
MESSAGE STRUCTURE -
Messages must often be built from segments. To accommodate grammatical

differences, it may be necessary to change the order in which the fragments are con—
nected.

Hewlett—Packard -2- July 9, 1985

HPNLS(7) HPNLS(7)

EXAMPLE
A "fully localized” version of “pr” would

Never strip the 8th bit of a character code.
Properly format the date in each page header.
Use the message catalog system to select user error messages.

FILES
/Jusr/lib/nls/*

SEE ALSO
date(1), sort(1l), ctime(3C), ecvt(3C), getmsg(3C), langinfo(3C), nl_conv(3C), nl_ctype(3C),
nl_string(3C), printmsg(3C), strtod(3C), ascii(7), kana8(7), roman8(7).

Hewlett-Packard -3- July 9, 1985

KANAS(7)

NAME

kana8 - map of KANAS character set used by NLS

SYNOPSIS

1s /usr/lib/nls/*
HP-UX COMPATIBILITY

Level:
Origin:
DESCRIPTION

HP-UX/STANDARD

HP

KANAS(7)

Kana8 is a map of the KANAS8 character set, giving the octal, decimal, and hexadecimal

equivalents of each character, to be printed as needed. It contains:

000 0
002 2
004 4q
006 6
010 8
012 10
014 12
0le 14
020 18
022 18
024 20
026 22
030 24
032 26
034 28
036 30
040 32
042 34
044 36
046 38
050 40
052 42
054 44
056 46
060 48
062 50
064 52
066 54
070 56
072 58
0?4 60
076 62
100 64
102 66
104 68
106 70

MO v A -

nal
stx
eot
ack
bs
nl
np
so
dle
dc?2
dc4
sun
can
sub
fs
rs
sp

"

v kAo

o;mbhNO-

001
003
005
00?7
011
013
015
017
021
023
n25
027
031
033
035
037
041
043
045
04?7
051
053
0S5
057
061
063
065
067
071
073
075
077
101
103
105
107

soh
etx
eng
bel
ht
vt
cr
si
del
dc3
nak
etb
em
esc
gs
us

ONNAWEFE N |+~ =302

QE QDI -

Hewlett—Packard

July 11, 1985

KANA8(7)

KANAS(7)

174

yen

RN X ebRg 3 HL.ITHMAD » PKNXClImUZE4m

582

hook
to-ten
wo

small i
small e
small ya
small vo

W4+ g M

111
113
115
117

123
125
127
131
133
135
137
141
143
145
147

153
155
157
181
163
165
167
171
173
175
127
201
203
205
207
211
213
215
217

223
225
227
231
233
235
237
241
243
245
247
251
253
255
257

X ECUOOIARH

“EL®ONO03 X0 00|

[VPN
[]
jo)

553

ku-ten
uanhook
dot
small a
small u
small o
small yu

P8O oL

v small tsa

Hewlett-Packard

July 11, 1985

KANAS(7) KANAS8(7)

260 176 b0 - dash 261 177 bl 7 a
262 178 b2 1 i 263 179 b3 7 u
264 180 b4 I e 265 181 bS #* o
266 182 b6 N ka 267 183 b7 * ki
270 184 bB ? ku 271 185 bS 7T ke
272 186 ba 1 ko 273 187 bb ¥ sa
274 188 bc ¥ shi 275 1839 bd R su
276 180 be T se 277 181 bf Y so
300 182 c0 ? ta 301 193 ¢l ¥ chi
302 184 c2 W tsu 303 195 3 7 te
304 196 c4 b to 305 187 c5 ¥ na
306 198 c6 = ni 307 189 ¢7 X nu
310 200 c8 % ne 311 201 ¢S 0 no
312 202 ca A ha 313 203 c¢cb £t hi
314 204 cc 2 fua 315 205 cd N he
316 206 ce & ho 317 207 cf R ma
320 208 40 = wi 321 208 dl 6 mu
322 210 d2 X me 323 211 d3 £ mo
324 212 d4 T vya 325 213 d5 1 ya
326 214 d6 3 yo 327 215 47 3 ra
330 216 d8 4 ri 331 217 dS Wb ru
332 218 da L re 333 218 db 0 ro
334 220 dc ? wa 335 221 dd U n
336 222 de " wvoiced 337 223 df ° degree
340 224 e0 341 225 el
342 226 e2 343 227 e3
344 228 e4 345 229 eS5
346 230 e6 347 231 e7
350 232 e8 351 233 e9
352 234 ea 353 235 eb
354 236 ec 355 237 ed
356 238 ee 357 239 ef
360 240 fO0 361 241 f1
362 242 f£2 363 243 £3
364 244 f4 385 245 £S5
366 246 f6 367 247 f£7
370 248 f8 371 249 f9
372 250 fa 373 251 fb
374 252 fc 375 253 fd
376 254 fe 377 255 ff

FILES

/Jusr/lib/nls/*
SEE ALSO
ascii(7), hpnls(7), roman8(7).
WARNINGS

Peripheral or software limitations may garble this manual page. Many printers and terminals do
not support the KANAS8 character set.

Hewlett—Packard -3- July 11, 1985

LANGID (7) LANGID (7)

NAME
langid - language identification variable used with NLS
HP-UX COMPATIBILITY
Level: HP-UX/STANDARD
Origin: HP
DESCRIPTION
This page defines integer values corresponding to values of the variable LANG in the user’s
environment. These are the values returned by currlangid(3C) , and are passed as parameters
into native language support library routines.
LANGUAGE NAMES
The following languages are currently supported by HP-UX.

Language

Num Abbreviation Name

00 n-computer native computer
01 american american

02 c—french canadian french
03 danish danish

04 dutch dutch

05 english english

06 finnish finnish

07 french french

08 german german

09 italian italian

10 norwegian norwegian

11 portuguese portuguese

12 spanish spanish

13 swedish swedish

14-40 reserved
41 katakana katakana

42-80 reserved

SEE ALSO
langinfo(3C), environ(7), hier(7), hpnls(7).

BUGS
Currently only supported in ’sh’.

Hewlett-Packard -1- July 9, 1985

MAN(7) MAN(7)

NAME
man - macros for formatting entries in this manual

SYNOPSIS
nroff -man files

HP-UX COMPATIBILITY
Level: Text Processing - HP-UX/STANDARD

Origin: System V

DESCRIPTION
These nroff(1) macros are used to lay out the format of the entries of this manual. These macros
are used by the man(1) command.

The default page size is 8.5”"%x11", with a 6.5”x10” text area. The -rV2 option may be used to
set certain parameters to values appropriate for certain Versatec printers: it sets the line length
to 82 characters, the page length to 84 lines, and it inhibits underlining.

wn

Any tezt argument below may be one to six “words”. Double quotes (””) may be used to include
blanks in a “word”. If text is empty, the special treatment is applied to the next line that con—
tains text to be printed. For example, .I may be used to italicize a whole line, or .SM followed by
.B to make small bold text. By default, hyphenation is turned off.

Type font and size are reset to default values before each paragraph and after processing font-
and size-setting macros, e.g., .I, .RB, .SM. Tab stops are neither used nor set by any macro
except .DT and .TH.

Default units for indents in are ens. When n is omitted, the previous indent is used. This
remembered indent is set to its default value (5 ens in nroff-this corresponds to 0.5” in the default
page size) by .TH, .P, and .RS, and restored by .RE.

.TH ¢ s ¢ n Set the title and entry heading; ¢ is the title, s is the section number, c is extra com-
mentary, e.g., “local”, n is new manual name. Invokes .DT (see below).

.SH tezt Place subhead tezt, e.g., SYNOPSIS, here.

.SS text Place sub-subhead tezt, e.g., Options, here.

.B text Make tezt bold.

I text Make text italic.
.SM text Make tezt 1 point smaller than default point size.
RIab Concatenate roman a with italic b, and alternate these two fonts for up to six argu-

ments. Similar macros alternate between any two of roman, italic, and bold:
JR .RB .BR .IB .BI

P Begin a paragraph with normal font, point size, and indent. .PP is a synonym for .P.
HP in Begin paragraph with hanging indent.
TP in Begin indented paragraph with hanging tag. The next line that contains text to be

printed is taken as the tag. If the tag does not fit, it is printed on a separate line.
IP tin Same as .TP in with tag ¢; often used to get an indented paragraph without a tag.

.RS in Increase relative indent (initially zero). Indent all output an extra in units from the
current left margin.
.RE k Return to the kth relative indent level (initially, k=1; k=0 is equivalent to k=1); if k

is omitted, return to the most recent lower indent level.
PMm Produces proprietary markings; where m may be P for PRIVATE, or N for

NOTICE.
.DT Restore default tab settings (every 5 ens in nroff).
PD v Set the interparagraph distance to v vertical spaces. If v is omitted, set the inter—

paragraph distance to the default value (1v in nroff).

The following strings are defined:

Hewlett—Packard -1- July 9, 1985

MAN (7) MAN (7)

*R “(Reg.)” in nroff.
*+S Change to default type size.
\#(Tm Trademark indicator.

The following number registers are given default values by .TH:

IN Left margin indent relative to subheads (default is 5 ens in nroff).
LL Line length including IN.
PD Current interparagraph distance.

CAVEATS

FILES

In addition to the macros, strings, and number registers mentioned above, there are defined a
number of internal macros, strings, and number registers. Except for names predefined by nroff
and number registers d, m, and y, all such internal names are of the form X4, where X is one of
),], and }, and A stands for any alphanumeric character.

If a manual entry needs to be preprocessed by tbi(1), it must begin with a special line (described
in man(1)), causing the man command to invoke the appropriate preprocessor(s).

The programs that prepare the Table of Contents and the Permuted Index for this Manual
assume the NAME section of each entry consists of a single line of input that has the following
format:

name[, name, name ...] \- explanatory text

The macro package increases the inter-word spaces (to eliminate ambiguity) in the SYNOPSIS
section of each entry.

The macro package itself uses only the roman font (so that one can replace, for example, the bold
font with a different font). Of course, if the input text of an entry contains requests for other
fonts (e.g., .I, .RB, \fI), the corresponding fonts must be mounted.

/usr/lib/tmac/tmac.an
/usr/lib/macros/cmp.n.[dt].an
/usr/lib/macros/ucmp.n.an

SEE ALSO

BUGS

man(1), nroff(1).

If the argument to .TH contains any blanks and is not enclosed by double quotes (””), the output
can be incorrectly formatted.

Hewlett—Packard -2- July 9, 1985

MATH (7) MATH(7)

NAME
math - math functions and constants

SYNOPSIS
#include <math.h>

HP-UX COMPATIBILITY
Level: HP-UX/STANDARD

Origin: System V

DESCRIPTION
This file contains declarations of all the functions in the Math Library (described in Section 3M),
as well as various functions in the C Library (Section 3C) that return floating-point values.

It defines the structure and constants used by the matherr(3M) error-handling mechanisms,
including the following constant used as an error-return value:

HUGE The maximum value of a single-precision floating-point number.
MAXFLOAT The maximum value of a single-precision floating-point number.

For the definitions of various machine-dependent ‘“constants,” see the description of the
<walues.h> header file.

FILES
/Jusr/include/math.h

SEE ALSO
intro(3), matherr(3M), values(7).

Hewlett-Packard -1- July 10, 1985

MM(7)

NAME

MM(7)

mm - the MM macro package for formatting documents

SYNOPSIS
mm [options | [files |

nroff -mm | options | [files]
nroff -em [options | [files]
HP-UX COMPATIBILITY

Level: Text Processing - HP-UX/STANDARD

Origin: System V
DESCRIPTION

This package provides a formatting capability for a very wide variety of documents. The manner
in which a document is typed in and edited is essentially independent of whether the document is
to be eventually formatted at a terminal or is to be phototypeset. See the references below for

further details.

The -mm option causes nroff and troff(1) to use the non-compacted version of the macro pack—
age, while the -cm option results in the use of the compacted version, thus speeding up the pro—

cess of loading the macro package.

FILES
/usr/lib/tmac/tmac.m
/usr/lib/macros/mmn
/usr/lib/macros/cmp.n.[dt].m
/usr/lib/macros/ucmp.[nt].m

SEE ALSO
mm(1), nroff(1).

pointer to the non-compacted version of the package
non-compacted version of the package

compacted version of the package

initializers for the compacted version of the package

MM-Memorandum Macros in HP-UX Concepts and Tutorials.

HARDWARE DEPENDENCIES

Compacted macros are not suppoprted on Series 500 implementations.

Hewlett-Packard

-1- July 9, 1985

REGEXP (7)

NAME

REGEXP (7)

INIT, GETC, PEEKC, UNGETC, RETURN, ERROR, compile, step, advance - regular expres—
sion compile and match routines

SYNOPSIS

#define INIT <declarations>

#define GETC() <getc code>

#define PEEKC() <peekc code>

#define UNGETC(c) <ungetc code>
#define RETURN(pointer) <return code>
#define ERROR(val) <error code>

#include <regexp.h>

char *compile (instring, expbuf, endbuf, eof)
char *instring, *expbuf, *endbuf;

int eof;

int step (string, expbuf)
char #string, *expbuf;

int advance (string, expbuf)
char *string, *expbuf;

extern char #locl, *loc2, *locs;

extern int circf, sed, nbra;

HP-UX COMPATIBILITY

Level: HP-UX/RUN ONLY

Origin: System III

DESCRIPTION

This page describes general-purpose regular expression matching routines in the form of ed(1),
defined in /usr/include/regexp.h. Programs such as ed(1), sed(1), grep(1), bs(1), ezpr(1), etc.,
which perform regular expression matching use this source file. In this way, only this file need be
changed to maintain regular expression compatibility.

The interface to this file is complex. Programs that include this file must have the following five
macros declared before the “#include <regexp.h>"' statement. These macros are used by the

compile routine.
GETC()

PEEKC()

UNGETC(c)

RETURN(pointer)

ERROR(val)

Hewlett—Packard

Return the value of the next character in the regular expression pattern.
Successive calls to GETC() should return successive characters of the regu—
lar expression.

Return the next character in the regular expression. Successive calls to
PEEKC() should return the same character (which should also be the next
character returned by GETC()).

Cause the argument ¢ to be returned by the next call to GETC() (and
PEEKC()). No more than one character of pushback is ever needed and
this character is guaranteed to be the last character read by GETC(). The
value of the macro UNGETC(c) is always ignored.

This macro is used on normal exit of the compile routine. The value of the
argument pointer is a pointer to the character after the last character of
the compiled regular expression. This is useful to programs which have
memory allocation to manage.

This is the abnormal return from the compile routine. The argument val is
an error number (see table below for meanings). This call should never

-1- July 9, 1985

REGEXP (7) REGEXP (7)

return.
ERROR MEANING
11 Range endpoint too large.
16 Bad number.
25 “\digit” out of range.
36 Illegal or missing delimiter.
41 No remembered search string.
42 \(\) imbalance.
43 Too many \(.
44 More than 2 numbers given in \{ \}.
45 } expected after \.
46 First number exceeds second in \{ \}.
49 [] imbalance.
50 Regular expression overflow.

The syntax of the compile routine is as follows:
compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile routine but is useful for pro—
grams that pass down different pointers to input characters. It is sometimes used in the INIT
declaration (see below). Programs which call functions to input characters or have characters in
an external array can pass down a value of ((char %) 0) for this parameter.

The next parameter ezpbuf is a character pointer. It points to the place where the compiled regu-
lar expression will be placed.

The parameter endbuf is one more than the highest address that the compiled regular expression
may occupy. If the compiled expression cannot fit in (endbuf-ezpbuf) bytes, a call to ERROR(50)
is made.

The parameter eof is the character which marks the end of the regular expression. For example,
in ed(1), this character is usually a /.

Each program that includes this file must have a #define statement for INIT. This definition will
be placed right after the declaration for the function compile and the opening curly brace ({). It
is used for dependent declarations and initializations. Most often it is used to set a register vari—
able to point to the beginning of the regular expression so that this register variable can be used
in the declarations for GETC(), PEEKC() and UNGETC(). Otherwise it can be used to declare
external variables that might be used by GETC(), PEEKC() and UNGETC(). See the example
below of the declarations taken from grep(1).

There are other functions in this file which perform actual regular expression matching, one of
which is the function step. The call to step is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be checked for a match. This
string should be null terminated.

The second parameter ezpbuf is the compiled regular expression which was obtained by a call of
the function compile.

The function step returns non-zero if the given string matches the regular expression, and zero if
the expressions do not match. If there is a match, two external character pointers are set as a
side effect to the call to step. The variable set in step is locZ. This is a pointer to the first char—
acter that matched the regular expression. The variable loc2, which is set by the function
advance, points to the character after the last character that matches the regular expression.
Thus if the regular expression matches the entire line, locZ will point to the first character of
string and loc2 will point to the null at the end of string.

Hewlett—Packard -2- July 9, 1985

REGEXP (7) REGEXP (7)

Step uses the external variable circf which is set by compile if the regular expression begins with
. If this is set then step will try to match the regular expression to the beginning of the string
only. If more than one regular expression is to be compiled before the first is executed the value
of circf should be saved for each compiled expression and circf should be set to that saved value
before each call to step.

The function advance is called from step with the same arguments as step. The purpose of step is
to step through the string argument and call advance until advance returns non-zero indicating a
match or until the end of string is reached. If one wants to constrain string to the beginning of
the line in all cases, step need not be called; simply call advance.

When advance encounters a * or \{ \} sequence in the regular expression, it will advance its
pointer to the string to be matched as far as possible and will recursively call itself trying to
match the rest of the string to the rest of the regular expression. As long as there is no match,
advance will back up along the string until it finds a match or reaches the point in the string that
initially matched the * or \{ \}. It is sometimes desirable to stop this backing up before the ini—
tial point in the string is reached. If the external character pointer locs is equal to the point in
the string where the match first occurred at sometime during the backing up process, advance will
break out of the loop that backs up and will return zero. This is used by ed(1) and sed(1) for
substitutions done globally (not just the first occurrence, but the whole line) so, for example,
expressions like s/y#*//g do not loop forever.

The additional external variables sed and nbra are used for special purposes.

EXAMPLES
The following is an example of how the regular expression macros and calls look from an old ver—
sion of grep(1):

#tdefine INIT register char *sp = instring;
#define GETC() (*sp+-+)

#define PEEKC() (*sp)

#define UNGETC(c) (--sp)

#define RETURN(c) return;

#define ERROR(c) regerr()

#include <regexp.h>
(void) compile(*argv, expbuf, &expbuf[ESIZE], /\0r);

if (step(linebuf, expbuf))
succeed();

FILES
/usr/include/regexp.h

SEE ALSO
bs(1), ed(1), expr(1), grep(1), sed(1).

BUGS
The handling of circf is poor.
The actual code is probably easier to understand than this manual page.

Hewlett—Packard -3- July 9, 1985

ROMANS (7)

NAME

roman8 - map of ROMANS character set used by NLS

SYNOPSIS

Is /usr/lib/nls/*
HP-UX COMPATIBILITY

Level:
Origin:
DESCRIPTION

HP-UX/STANDARD

HP

ROMANS(7)

Roman8 is a map of the ROMANS character set, giving the octal, decimal, and hexadecimal

equivalents of each character, to be printed as needed. It contains:

000 0
002 2
004 4
006 6
010 8
012 10
014 12
016 14
020 16
022 18
024 20
026 22
030 24
032 26
034 28
036 30
040 32
042 34
044 36
046 38
050 40
052 42
054 44
056 46
060 48
062 50
064 52
066 54
070 56
072 658
074 60
076 62
100 64
102 66
104 68
106 70

00
02
04
06
08

nul
stx
eot
ack
bs

nl

np

so

dle
dc2
dca
syn
can
sub

rh
1]

w0
T u

* ~ v

HOWBDV A«ORAPNO -

001
003
005
007
011
013
015
017
021
023
025
027
031
033
035
037
041
043
045
047
051
053
055
057
061
063
065
067
071
073
075
077
101
103
105
107

01
03
05
07
03
Ob
od
of
11
13
15
17
19
ib

soh
etx
eng
bel
ht
vt
cr
si
dc1

ONUwrPr N |+~ -3

QE QYO i

Hewlett-Packard

July 11, 1985

ROMANS(7)

ROMANS (7)

110 72
112 74
114 76
116 78

122 82
124 84
126 86
130 88
132 90
134 92
136 94
140 96
142 98
144 100
146 102
150 104
152 106
154 108
156 110
160 112
162 114
164 116
166 118
170 120
172 122
174 124
176 126
200 128
202 130
204 132
206 134
210 136
212 138
214 140
216 142
220 144
222 146
224 148
226 150
230 152
232 154
234 156
236 158
240 160
242 162
‘ 244 164
\ 246 166
) 250 168
252 170
254 172
256 174

cHx/NX<SADYZCOOX

$§ — N XS TS0 3 HFLITHQAD

ss2

A circumflex
E circumflex
I circumflex
accent acute
circumflex

tilde accent
0 U circumflex

S H

>

111
113
115
117
121
123
125
127
131
133
135
137
141
143
145
147
151
153
155
157
161
163
165
167
171
173
175
177
201
203
205
207
211
213
215
217
221
223
225
227
231
233
235
237
241
243
245
247
251
253
255
257

111
113
115
117
119
121
123
125
127
129
131
133
135
137
139
141
143
145
147
149
151
153
155
157
159
161
163
165
167
169
171
173
175

—mKECNO0O0OXAH

v~ E 0N 03®XEO OO

ss3

A accent grave
E accent grave
E umlaut

I umlaut
accent grave
umlaut accent
U accent grave
Italian lira

o H oMby P

[=4

Hewlett—Packard

July 11, 1985

ROMANS(7) ROMANS(7)

260 176 bO ~ over line 261 177 b1

262 178 b2 263 179 b3 ° degree
264 180 ba C cedilla 265 181 bS5 c cedilla
266 182 b6 N tilde 267 183 b7 n tilde

270 184 b8
272 186 ba

inv. exclamation |271 185 b9
general currency |273 187 bb

inv. question
British pound

274 188 bc Japanese yen 275 189 bd section

276 190 be Dutch guilder 277 191 bf U.S. cent

300 192 coO circumflex 301 193 ci e circumflex
302 194 c2 circumflex 303 195 «c3 u circumflex
304 196 c4 accent acute 305 197 ¢S e accent acute
306 198 c¢6 accent acute 307 199 c7 u accent acute
310 200 «c8 accent grave 311 201 c9 e accent grave
312 202 ca accent grave 313 203 c¢cb u accent grave
314 204 cc umlaut 315 205 «cd e umlaut

316 206 ce umlaut 317 207 cf u umlaut

320 208 do degree 321 209 di1 i circumflex
322 210 d2 crossbar 323 211 ds AE ligature
324 212 d4 degree 325 213 ds i accent acute

326 214 ds6 crossbar 327 215 47 ae ligature

I QRO HOMPDODIND PR DDA OO OO DY KX 2O

I Oo0OO0OHAD DPUEMOPOD OPONMODMONMOD
T CUROHORDP=C B~ DO 0Ot RO

330 216 ds umlaut 331 217 49 i accent grave
332 218 da umlaut 333 219 db U umlaut
334 220 dc accent acute 335 221 dd i umlaut
336 222 de harp s 337 223 df O circumflex
340 224 e0 accent acute 341 225 el A tilde
342 226 e2 tilde 343 227 e3 D stroke
344 228 e4 stroke 345 229 e5 I accent acute
346 230 eé6 accent grave 347 231 e7 O accent acute
350 232 e8 accent grave 351 233 e9 O tilde
352 234 ea tilde 353 235 eb S caron
354 236 ec caron 355 237 ed U accent acute
356 238 ee umlaut 357 239 ef y umlaut
360 240 foO HORN 361 241 f1 thorn
362 242 f2 363 243 f£3
364 244 f4 365 245 f£5
366 246 f6 - long dash 367 247 f£7 % one fourth
370 248 £f8 } one half 371 249 f9 & femin. ordinal
372 250 fa 2 masc. ordinal 373 251 fb « open guillemets
374 252 fc m solid 375 253 fd » close guillemets
376 254 fe t plus/minus 377 255 ff
FILES
/Jusr/lib/nls/*
SEE ALSO
ascii(7), hpnls(7), kana8(7).
WARNINGS

Peripheral or software limitations may garble this manual page. Some printers and terminals do
not support the ROMANS character set.

Hewlett-Packard -3- July 11, 1985

STAT(7) STAT(7)

NAME
stat - data returned by stat/fstat system call

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY
Origin: System III

DESCRIPTION
The system calls stat and fstat(2) return data whose structure is defined by this include file. The
encoding of the field st_mode is defined in this file also.

*

* Structure of the result of stat

*/
struct stat
{
dev_t st_dev;
ino_t st_ino;
ushort st_mode;
short st_nlink;
ushort st__uid;
ushort st__gid;
dev_t st_rdev;
off _t st_size;
time__t st__atime;
time__t st_mtime;
time_t st__ctime;
h
#define S_IFMT 0170000 /* type of file x/
#define S_IFDIR 0040000 /* directory %/
#define S_TFCHR 0020000 /* character special */
#define S_TFBLK 0060000 /* block special */
#define S_IFREG 0100000 /* regular */
#define S_IFIFO 0010000 /* fifo %/
#define S_IFNWK 0110000 /* network special */
#define S_ISUID 04000 //* set user id on execution */
#define S_ISGID 02000 //* set group id on execution */
#define S_ISVTX 01000 //* save swapped text even after use */
#define S_TREAD 00400 //* read permission, owner */
#define S_TWRITE 00200 / write permission, owner %/
#define S_TEXEC 00100 //* execute/search permission, owner */

FILES
/usr/include/sys/types.h
/Jusr/include/sys/stat.h
SEE ALSO
stat(2), types(5).

Hewlett—Packard -1- July 9, 1985

STAT(7) STAT(7)

HARDWARE DEPENDENCIES
Integral PC:
The S_IFNWK i-node type is not supported.

Hewlett—Packard -2- July 9, 1985

TERM (7) TERM (7)

NAME
term - conventional names for terminals

HP-UX COMPATIBILITY
Level: HP-UX/RUN ONLY

Origin: System III and UCB

DESCRIPTION
The environment variable TERM is used by certain commands (e.g., tabs(1), and is maintained as
part of the shell environment (see profile(4), and environ(5)) The tset(1) command can be used to
set the TERM variable When tset is used, the name to which TERM is set must be listed in the
/terminfo data base (see terminfo(5)).

hpsub Minimal subset of the capabilities of all Hewlett-Packard terminals and terminal
emulators supported on both Series 500 and Series 200 HP-UX.

hp Minimal subset of the capabilities of Hewlett-Packard terminals supported on both
Series 200 and Series 500 HP-UX (does not include 98x6 Internal Terminal Emula-
tor).

9836 Internal Terminal Emulator (ITE) for the HP 9000 Models 236 and 220 computers.

9826 Internal Terminal Emulator (ITE) for the HP 9000 Model 226 computer.

262x Hewlett—Packard 262x family. Includes the HP 2622, HP 2623, and HP 2624 termi-
nals.

2622 Hewlett-Packard HP 2622 terminal.

2623 Hewlett—Packard HP 2623 graphics terminal.

2624 Hewlett—Packard HP 2624 terminal.

Other terminal names included in the /terminfo data base do not imply support of those termi-

nals.

The TERM variable is also used by certain commands (e.g. nroff{1), man(1), tabs(1)), some of
which use terminal and printer description files from the /usr/lib/terms directory. TERM names
which have files in this directory include the following (note that the publication of these names
and presence of these files does not imply support of these devices):

2631 Hewlett—-Packard 2631 line printer.

2631-—c Hewlett—Packard 2631 line printer - compressed mode.
2631-e Hewlett—Packard 2631 line printer - expanded mode.
300 DASI/DTC/GSI 300 and others using the Hy Type I printer.
300-12 Same as 300, in 12-pitch mode.

300s DASI/DTC/GSI 300s

300s-12 Same as 300s, in 12-pitch mode.

382 DTC 382.

37 TELETYPE Model 27 KSR.

4000A Trendata 4000A.

450 DASI 450 (same as Diablo 1620).

450-12 Same as 450, in 12-pitch mode.

Ip Generic name for a line printer.

tn300 General Electric TermiNet 300.

A basic terminal name can be up to eight characters chosen from A-Z, a-z, 0-9, and -. Terminal
sub-models and operational modes are distinguished by suffixes beginning with a -. Names should
generally be based on original vendors, rather than local distributors. A terminal acquired from
one vendor should not have more than one distinct basic name.

Commands whose behavior depends on the type of terminal should accept arguments of the form
-Tterm where term is one of the names given above; if no such argument is present, such com—
mands should obtain the terminal type from the environment variable $TERM, which, in turn,
should contain term.

Hewlett—Packard -1- July 9, 1985

TERM (7) TERM(7)

SEE ALSO
ex(1), man(1), mm(1), more(1), nroff(1), sh(1), stty(1), tabs(1l), tset(1), ul(1), curses(3), ter—
minfo(5), profile(5), ttytype(5), environ(7).

Hewlett—Packard -2- July 9, 1985

TYPES(7)

NAME

TYPES (7)

types - primitive system data types

SYNOPSIS
#include <sys/types.h>

HP-UX COMPATIBILITY

The example given on this page is a typical version; the type names are in general

expected to be present, although exceptions can be described in HARDWARE
DEPENDENCIES. The fundamental type which implements each typedef is impleme—
tation dependent, as long as source code which uses those typedefs need not be

Level: HP-UX/RUN ONLY
Origin: System III
Remarks:
changed.
DESCRIPTION

The data types defined in the include file are used in HP-UX system code; some data of these

types are accessible to user code:

#define NREGS_S 13 /* no. of regs saved */
typedef struct { int r[1]; } * physadr;
typedef long daddr__t;

typedef char = caddr_t;

typedef unsigned int uint;

typedef unsigned short ushort;

typedef ushort ino_t;

typedef short cnt_t;

typedef long time__t;

typedef int label _t[NREGS_S];
typedef long dev_t;

typedef long off__t;

typedef long paddr_t;

typedef long key__t;

Note that the defined names above are standardized, but the actual type to which they are
defined may vary between HP-UX implementations.

The form daddr—t is used for disc addresses except in an i-node on disc, see fs(5). Times are
encoded in seconds since 00:00:00 GMT, January 1, 1970. The major and minor parts of a device
code specify kind and unit number of a device and are installation-dependent. Offsets are meas—
ured in bytes from the beginning of a file. The label ¢t variables are used to save the processor
state while another process is running.

HARDWARE DEPENDENCIES
Series 500:

The types NREGS_S and label__t are not implemented.

SEE ALSO
fs(5).

Hewlett—Packard

July 9, 1985

VALUES(7)

NAME

VALUES(7)

values - machine-dependent values

SYNOPSIS

#include <values.h>

HP-UX COMPATIBILITY

Level: HP-UX/STANDARD
Origin: System V Release 2

DESCRIPTION

This file contains a set of manifest constants, conditionally defined for particular processor archi—

tectures.

The model assumed for integers is binary representation (one’s or two's complement), where the
sign is represented by the value of the high—order bit.

BITS(type)
HIBITS

HIBITL
HIBITI
MAXSHORT
MAXLONG

MAXINT

The number of bits in a specified type (e.g., int).

The value of a short integer with only the high-order bit set (in most
implementations, 0x8000).

The value of a long integer with only the high-order bit set (in most
implementations, 0x80000000).

The value of a regular integer with only the high-order bit set (usually the
same as HIBITS or HIBITL).

The maximum value of a signed short integer (in most implementations,
O0x7FFF = 32767).

The maximum value of a signed long integer (in most implementations,
0x7FFFFFFF = 2147483647).

The maximum value of a signed regular integer (usually the same as MAX-
SHORT or MAXLONG).

MAXFLOAT, LN_MAXFLOAT The maximum value of a single-precision floating—point

number, and its natural logarithm.

MAXDOUBLE, LN_MAXDOUBLE The maximum value of a double-precision floating-point

number, and its natural logarithm.

MINFLOAT, LN_MINFLOAT The minimum positive value of a single—precision floating—point

number, and its natural logarithm.

MINDOUBLE, LN_MINDOUBLE The minimum positive value of a double-precision floating—

FSIGNIF
DSIGNIF
FILES

/usr/include/values.h

SEE ALSO
intro(3), math(7).

Hewlett—Packard

point number, and its natural logarithm.

The number of significant bits in the mantissa of a single-precision
floating-point number.

The number of significant bits in the mantissa of a double-precision
floating-point number.

-1- July 9, 1985

VARARGS(7) VARARGS(7)

NAME
varargs - handle variable argument list

SYNOPSIS
#include <varargs.h>

va_alist

va_del

void va_start(pvar)
va_list pvar;

type va_arg(pvar, type)
va_list pvar;

void va_end(pvar)
va_list pvar;

DESCRIPTION
This set of macros allows portable procedures that accept variable argument lists to be written.
Routines that have variable argument lists (such as printf(3S)) but do not use varargs are
inherently nonportable, as different machines use different argument-passing conventions.

va__alist is used as the parameter list in a function header.

va_dcl is a declaration for va_alist. No semicolon should follow va_decl.
va_list is a type defined for the variable used to traverse the list.
va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. Type is the type the argu—
ment is expected to be. Different types can be mixed, but it is up to the routine to know what
type of argument is expected, as it cannot be determined at runtime.

va_end is used to clean up.
Multiple traversals, each bracketed by va_start ... va_end, are possible.

EXAMPLE
This example is a possible implementation of ezecl(2).

#include <varargs.h>
#define MAXARGS 100

/% execl is called by
execl(file, argl, arg2, ..., (char x)0);
*/

execl(va_alist)
va_decl
{
va_list ap;
char xfile;
char xargs] MAXARGS];
int argno = 0;

va_start(ap);

file = va_arg(ap, char *);

while ((args[argno++] = va_arg(ap, char *)) != (char %)0)
va_end(ap);

return execv(file, args);

Hewlett—Packard -1- July 9, 1985

VARARGS(7) VARARGS(7)

SEE ALSO
exec(2), printf(3S).

BUGS
It is up to the calling routine to specify how many arguments there are, since it is not always pos—
sible to determine this from the stack frame. For example, ezecl is passed a zero pointer to signal
the end of the list. Printf can tell how many arguments are there by the format.
It is non-portable to specify a second argument of char, short, or float to va_arg, since argu—
ments seen by the called function are not char, short, or float. C converts char and short argu—
ments to int and converts float arguments to double before passing them to a function.

Hewlett—Packard -2- July 9, 1985

INTRO (8) INTRO(8)

NAME
intro - introduction to system maintenance procedures

DESCRIPTION
This section outlines certain procedures that will be of interest to those charged with the task of
system maintenance. Included are discussions on such topics as boot procedures, recovery from
crashes, file backups, etc.

SEE ALSO
Section 1IM. No manual pages are included in Section 8 for this printing. Commands formerly in
this section have been moved to Section 1M.

Hewlett-Packard -1- July 9, 1985

INTRO (9) INTRO (9)

NAME
intro - introduction to glossary section

DESCRIPTION
This section contains a glossary of common HP-UX terms. References to other HP-UX docu-
mentation are included as appropriate. References to entities such as wait(2), sh(1), or fopen(3S)
refer to entries in the HP-UX Reference manual. References to items in italics but having no
parenthetical suffixes refer to other entries in the glossary. Finally, any references to italicized
manuals refer to separate manuals that are included with your system.

Hewlett—Packard -1- July 9, 1985

GLOSSARY (9)

.0 ("dot-oh")

absolute path name

access

access groups

address

affiliation

a.out

archive

AScII

asynchronous 10

backup

block

Hewlett—Packard

GLOSSARY (9)

A general name for an object file; also the format of an unlinked
object file. See a.out.

A path name beginning with a slash (/). It indicates that the
file’s location is given relative to the root directory (/), and that
the search begins there.

Access to system resources is governed by three entities: the
effective user ID, the effective group ID, and the group access
list.

The group access list is an additional set of group ID’s used only
in determining resource accessibility. Access checks are per—
formed as described below in file access permissions.

In the context of peripheral devices, a set of values which specify
the location of an I/O device to the computer. The exact details
of the formation of an address differ between systems. On the
Series 200 and 500, the address is composed of up to four ele-
ments: the select code, bus address, unit number (id), and
volume number (id).

See terminal affiliation.

a.out is the default output file name used by the linker, ld(1),
and the C compiler, cc(1). It is also the format of executable
object code files on HP-UX. The format is machine-dependent,
and is described in the a.out(5) reference page for each imple-
mentation. Object code which is as yet unlinked is in the same
format, but is referred to as a .o ("dot-oh”) file.

A file which is made up of the contents of other files (such as a
group of object (usually .0) files to be used by the linker, ld(1)).
An archive file is created and maintained by ar(1), or by similar
programs, such as tar(1) or cpio(1). (Note that tar(1) and
cpio(1) files are not usually .o files.) An archive is often called a
library.

An acronym for American Standard Code for Information Inter—
change. It consists of a set of characters including letters,
numerals, punctuation, and control characters, each of which is
represented internally by 7 bits (0 - 127).

An IO operation for which the user process need not wait for
completion before continuing execution.

The process of making a copy of all or part of the file system in
order to preserve it should files be accidentally removed or des-
troyed (due to a power failure, hardware error, user mishap,
etc.). This is a highly recommended practice.

(1) The fundamental unit of information HP-UX uses for access
and storage allocation on a mass storage medium. The size of a
block varies between implementations. On the Series 200 it
varies from 1K to 8K bytes; for the Series 500, see logical block
size.

(2) On media such as 9 track tape which write variable length
strings of data, block is equivalent to the size of those strings.
Block is often used to distinguish from record with a block con-
taining several records, with the number of records being the

- July 9, 1985

GLOSSARY (9)

block special file

boot or boot-up

boot area

boot ROM

bus address

CS/80 or CS-80

character special file

child process

command

command interpreter

Hewlett—Packard

GLOBSBARY (9)

blocking factor.

A special file associated with a mass storage device (such as a
disc or a CS-80 tape cartridge drive) that transfers data by first
putting it in the buffer cache and then passing it to the user pro-
cess. If the user process requests data from a mass storage device
that already has the data in the buffer cache, then no I/O to the
mass storage device is necessary. Block special files may be
mounted.

The process of loading, initializing, and running an operating
system.

On the Series 200, a portion of a mass storage medium (block
zero) on which the volume header and a small “bootstrap” pro-
gram used in booting the operating system reside. The boot area
is reserved exclusively for use by HP-UX.

On the Series 500, the portion of an SDF mass storage medium
which contains an operating system.

A program residing in ROM (Read Only Memory) that executes
each time the computer is powered—up. The function of the boot
ROM is to run tests on the computer’s hardware, find all devices
accessible through the computer, and then load either a specified
operating system or the first operating system found according to
a specific search algorithm.

A number which makes up part of the address HP-UX uses to
“find” a particular device. The bus address is determined by a
switch setting on a peripheral device which allows the computer
to distinguish between two devices connected to the same inter—
face. A bus address is sometimes called a “device address”.

A family of mass storage devices that communicate via a com—
mon protocol, CS/80 (Command Set ’80) command set. This
family includes hard discs, removable discs, and tape devices.

A special file associated with devices which transfer data by a
means other than by using the buffer cache. Examples are
printers, terminals, nine-track magnetic tapes, and discs accessed
in “raw” mode (see raw disc).

A new process created by an existing process via the fork(2) or
vfork(2) system call. The new process is thereafter known to the
existing process as its child process. The existing process is the
parent process of the new process. See parent process and fork.

A stand-alone unit of executable code (a program), or a file con—
taining a list of other programs to execute in order (a shell
script). In HP-UX, commands are executed through a command
interpreter called a shell, often sh(1) or csh(1). Arguments fol-
lowing the command name are passed on to the command pro-
gram. You can write your own commands, either as executable
programs, or as shell scripts (written in the shell programming
language).

A program which reads lines of text from standard input (typed
at the keyboard or redirected from a file), and interprets them as
requests to execute other programs. A command interpreter for

-2- July 9, 1985

GLOSSARY (9)

configuration

control character

crash

current directory
current working directory

daemon

data encryption

default search path

delta

Hewlett—Packard

GLOSSARY (9)

HP-UX is called a shell. See sh(1) and csh(1).

The ability to “customize” your kernel with the drivers, code,
and tunable parameter values desired.

A member of a character set which produces action in a device
other than printing or displaying a character. In the ASCII
character set, control characters are those in the range 0 through
31, and 127. Control characters can be generated by holding
down [CTRL], [CONTROL], or [CNTL] (depending on what the
control key is labeled on your keyboard) and pressing a character
key. These two-key sequences are often written as ctrl-d, for
example, or "D, where " stands for the control key. Both
representations assume that the control key is held down while
the second key is pressed.

The unexpected shutdown of a program or system. If the operat—
ing system crashes, this is a “system crash”, and requires the
system to be re-booted.

See working directory.
See working directory.

A process which runs in the background, and which is usually
immune to termination instructions from a terminal. Its purpose
is to perform various scheduling, clean—up, and maintenance jobs.
Lpsched(1) is an example of a daemon that exists to perform
these functions for line printer jobs queued by Ip(1). An example
of a permanent daemon (i.e. it never should die) is cron(1m).

A method for encoding information in order to protect sensitive
or proprietary data. For example, all users’ passwords are
automatically encrypted by HP-UX. The encryption method
used by HP-UX converts ASCII text into a base-64 representa—
tion using the alphabet ., /, 0-9, A-Z, a-z. See passwd(5) for the
numerical equivalents associated with this alphabet.

The sequence of directory prefixes that sh(1), téme(1), and other
HP-UX commands apply in searching for a file known by an
incomplete path name (i.e. a path name not beginning with a
slash, /). It is defined by the environment variable PATH (see
environ(7)). Login(1) sets PATH equal to :/bin:/usr/bin,
which means that your working directory is the first directory
searched, followed by /bin, followed by /usr/bin. You can
redefine the search path by modifying the value of PATH. This
is usually done in /etc/profile, and/or in the .profile file found
in your home directory (for the Bourne shell), or csh.login,
login, or cshre (for the C-shell csh).

A term used in the Source Code Control System (SCCS) to
describe a unit of one or more textual changes to an SCCS file.
Each time you edit an SCCS file, the changes you make to the
file are stored separately as a delta. Then, using the gef(1) com—
mand, you can specify which deltas are to be applied to or
excluded from the SCCS file, thus yielding a particular version of
the file. (Contrast this with the v or ed editor, which incor—
porates your changes into the file immediately, prohibiting you
from obtaining a previous version of that file.) See SCCS, SCCS

-3- * July 9, 1985

GLOSSARY (9)

demon
device file

directory

effective group ID

effective user ID

Hewlett—-Packard

GLOSSARY (9)

file.

See daemon.
See spectal file.

A file which provides the mapping between the names of files and
their contents. For every file name contained in a directory, that
directory contains a pointer to the file’s -node called a link . A
file may have several links appearing anywhere on the same file
system. Each user is free to create (using mkdir(1)) as many
directories as he needs, providing that the parent directory of the
new directory gives him permission to do so. Once a directory
has been created, it is ready to contain ordinary files and other
directories. An HP-UX directory is named and behaves exactly
like an ordinary file, with one exception: no user (including the
super—user) is allowed to write data on the directory itself; this
privilege is reserved for the HP-UX operating system.

By convention, a directory contains at least two links, . and ..,
referred to as dot and dot-dot respectively. Dot refers to the
directory itself and dot-dot refers to its parent directory. For
purposes of deletion, a directory containing only . and .. is con-
sidered empty. (In the root directory, */”, “.”, and “..” are
identical.)

Every process has an effective group ID that is used to determine
file access permissions. A process’s effective group ID is deter—
mined by the file (command) that process is executing. If that
file’s set—group-ID bit is set (located in the mode of the file — see
mode), then the process’s effective group ID is set equal to the
file’s group ID. This makes the process appear to belong to the
file’s group, perhaps enabling the process to access files which
must be accessed in order for the program to execute successfully.
If the file’s set-group-ID bit is not set, then the process’s
effective group ID can only be set by an explicit call to getuid(2)
or setuid(2). The id is always inherited from parent across a
fork(2). The setuid/getuid bit determines whether it is inhereted
across ezec(2). See group, real group ID, and set-group-ID bit.

A process has an effective user ID that is used to determine file
access permissions (and other permissions with respect to system
calls, if the effective user ID is 0 — that of the super-user). A
process’s effective user ID is determined by the file (command)
that process is executing. If that file’s set-user-ID bit is set
(located in the mode of the file — see mode), then the process’s
effective user ID is set equal to the file’s user ID. This makes the
process appear to be the file’s owner, enabling the process to
access files which must be accessed in order for the program to
execute successfully. (Many HP-UX commands which are owned
by root, such as matl(1), have their set—user-ID bit set so other
users can execute these commands.) If the file’s set-group-ID bit
is not set, then the process’s effective group ID can only be set
by an explicit call to getuid(2) or setuid(2). The id is always
inherited from parent across a fork(2). The setuid/getuid bit
determines whether it is inhereted across ezec(2). See real user
ID and set-user-ID bit.

-4 - July 9, 1985

GLOSSARY (9)

environment

end-of-file

file

file access permissions

Hewlett-Packard

GLOSSARY (9)

The set of defined shell variables (some of which are PATH,
TERM, SHELL, EXINIT, HOME, etc.) which define the condi-
tions under which your commands run. These conditions can
include your terminal characteristics, your home directory, and
your default search path. Each shell variable setting in the
current process is passed on to all child processes that are
created, provided that each shell variable setting has been
exported via the ezport command (see sh(1)) or setenv(1) with
csh(1). Unexported shell variable settings are meaningful only to
the current process, and any child processes created are given the
default settings given certain shell variables in /etc/profile
and/or $HOME/.profile (when using the Bourne shell) or
/ete/csh.login, .login, or cshre (when using the C-shell).

(1) the data returned when attempting to read past the logical
end of a file via stdio(3S) routines. In this case end-of-file is not
properly a character. (2) The character [CTRL|-[D]. (3) A
character defined by stty(1) or ioctl(2) (see termio(4)). to act as
end-of-file on your terminal. Usually this is [CTRL]-[D]. (4)
The indication (as the function result) which indicates end of
data when using read(2).

An HP-UX file is simply a group of logically related bytes of
information. These bytes, for example, could be a bytes of exe—
cutable code or bytes of data. Thus, directories, ordinary files,
special files, etc. can all be considered files. Every file must have
a file name (see file name) which enables the user (and many of
the HP-UX commands) to reference the contents of the file. The
size of a file is exactly the number of bytes the file contains - the
system imposes no particular structure on the contents of a file
(although some programs do). Files may be accessed serially or
randomly (indexed by byte offset). The interpretation of file
contents and structure is up to the programs that access the file.

Every file in the file system has a set of access per— missions.
These permissions are used in determining whether a process may
perform a requested operation on the file (such as opening a file
for writing). Access permissions are established at the time a file
is created. They may be changed at some later time through the
chmod(2) call.

File access is broken down according to whether a file may be:
read, written, or executed. Directory files use the execute per—
mission to control if the directory may be searched.

File access permissions are interpreted by the system as they
apply to three different classes of users: the owner of the file,
those users in the file’s group, anyone else. Every file has an
independent set of access permissions for each of these classes.
When an access check is made, the system decides if permission
should be granted by checking the access information applicable
to the caller.

Read, write, and execute/search permissions on a file are granted
to a process if:

The process’s effective user ID is super—user.

-5- July 9, 1985

GLOSSARY (9)

file descriptor

file name

file pointer

Hewlett—Packard

GLOSSARY (9)

The process’s effective user ID matches the user ID of the
owner of the file and the appropriate access bit of the
“owner” portion (0700) of the file mode is set.

The process’s effective user ID does not match the user
ID of the owner of the file, and either the process’s
effective group ID matches the group ID of the file, or the
group ID of the file is in the process’s group access list,
and the appropriate access bit of the “group’ portion
(070) of the file mode is set.

The process’s effective user ID does not match the user
ID of the owner of the file, and the process’s effective
group ID does not match the group ID of the file, and the
appropriate access bit of the “other” portion (07) of the
file mode is set.

Otherwise, the corresponding permissions are denied.

A small integer identifier, which is used to refer to a file that has
been opened for reading and/or writing, and is an index into the
user’s table of open files. The opened file must be identified by
its file descriptor when using system calls to read or write the
file.

The value of a file descriptor has a range from 0 to a system
defined maximum. For systems at HP-UX STANDARD and
above, the minimum value for this number is 60. For systems
below HP-UX STANDARD the minimum value is 20. No file
descriptor may have a value outside the range 0-59 or 0-19,
depending on the implementation.

A file descriptor is obtained through system calls such as
open(2), creat(2), dup(2), fentl(2) or pipe(2). The file descriptor
is used as an argument by calls such as read(2), write(2), joctl(2),
and close(2).

A string of up to 14 characters which is used to refer to the con-
tents of an ordinary file, special file, or directory. These charac—
ters may be any ASCII character except ASCII values 0 (null)
and 47 (slash — /). Note that it is generally unwise to use *, ?, [,
!, or] as part of file names because of the special meaning the
shell attaches to these characters (see sh(1)). It is also not wise
to begin a file name with -, 4+, or =, because some programs
assume that these characters indicate that a command argument
follows. Although permitted, it is advisable to avoid the use of
characters which do not have a printable graphic on the
hardware you commonly use, or which are likely to confuse the
hardware.

A data element, obtained through any of the fopen(3S) standard
I/O library routines, which “points to” (refers to) a file opened
for reading and/or writing, and which keeps track of where the
next I/O operation will take place in the file (in the form of a
byte offset relative to the beginning of the file). After obtaining
the file pointer, it must thereafter be used to refer to the open file
when using any of the standard I/O library routines. (See
stdio(38) for a list of these routines.)

-6- July 9, 1985

GLOSSARY (9)

file system

filter

fork

group

group access list

hierarchical directory

home directory

host name

Hewlett-Packard

GLOSSARY (9)

The supporting data structures, HP-UX directory structure, and
associated files that reside on one or more mass storage volumes.
Refer to the System Administrator Manual supplied with your
system for details concerning file system implementation and
maintenance.

A command which reads data from the standard input, performs
a transformation on the data, and writes it to the standard out-
put.

An HP-UX system call (fork(2)) which, when invoked by an
existing process, causes a new process to be created. The new
process is called the child process; the existing process is called
the parent process. The child process is created by making an
exact copy of the parent process. The parent and child processes
are able to identify themselves by the value returned by their
corresponding fork call (see fork(2) for details).

A group is a set of 0 or more users who are usually logically
related in some way (e.g., all users who are working on a particu-
lar project) and who generally require the sharing of data
between each other. The members of a group are defined in the
file /etc/passwd via a numerical group ID (users with identical
group IDs are members of the same group). An ASCII group
name is associated with each group ID in the file /etc/group (the
members of each group can be listed in /etc/group, also, but this
information is purely for user benefit, and is of little use to the
system). A group ID is associated with every file in the file sys—
tem, and the mode of each file contains a set of permission bits
which apply only to groups of which the file owner is a member.
Thus, if you are a member of the group associated with the file,
and if the appropriate permissions are given to your group in the
file’s mode, you may access the file. See real group ID, effective
group ID, accessgroups, privilegedgroup, and set-group—ID bit.

The group access list is an additional set of group ID’s used only
in determining resource accessibility. Access checks are per-
formed as described in file access permissions.

A directory (or file system) structure in which each directory
may contain other directories as well as files.

The directory name given by the value of the shell variable
HOME. When you first log in, login(l) automatically sets
HOME equal to your login directory (see login directory). You
may change its value at any time, however. This is usually done
in the .profile file contained in your login directory. Setting
HOME in no way affects your login directory, but simply gives
you a convenient way of referring to what should be your most
commonly—used directory.

An ASCII string of at most 8 characters (of which only 6 are
supported by all the various manufactuer’s UNIX systems) which
uniquely identifies an HP-UX system on a uwucp network. The
host name for your system may be viewed and/or set with the
hostname(1) command. Systems without a defined host name
are described as “unknown” on the uucp network. Do not con—
fuse a host name with a node mame, which is a string that

-7- July 9, 1985

GLOSSARY (9)

i—node

image

nit

interleave factor

GLOSSARY (9)

uniquely identifies an HP-UX system on a Local Area Network
(LAN). Although your host and node names may be identical
(and this is often advisable), they are set and used by totally
different software. See node name.

Each ordinary or special file, or directory has associated with it
an i-node. The i-node contains, among other things, the file’s
size, protection mask, the number of links, and pointers to the
disc blocks where the file’s contents can be found. Each connec—
tion between an i-node and its entry in one or more directories is
called a link.

The current state of your computer (or your portion of the com—
puter, on a multi-user system) during the execution of a com-
mand. Often thought of as a “snapshot” of the state of the
machine at any particular moment during execution.

A special process (the initialization process) usually with a pro-
cess ID of 1. It is the ancestor of every other process in the sys—
tem and is used to start login processes.

A number which determines the order in which sectors on a mass
storage medium are accessed. It can be optimized to make data
acquisition more efficient.

Internal Terminal Emulator (ITE)

interrupt signal

intrinsic
1/0 redirection

kernel

library

Hewlett—Packard

The “device driver” code contained in the HP-UX kernel and
associated with the computer’s built-in keyboard and display or
a particular keyboard and display connected to the computer,
depending on the Series and Model of your HP-UX computer.
See system console and the System Adminstrator Manual sup—
plied with your system for details.

The signal sent by SIGINT (see signal(2)). This signal generally
terminates whatever program you are running. The key which
sends this signal can be redefined with Zoctl(2) or stty(1) (see ter—
mio(4)). It defaults to the ASCII DEL (rubout) character (the
[DEL] key) or the [BREAK] key. [CONTROL]-[C] is often used
instead.

See system call.

A mechanism provided by the HP-UX shell for changing the
source of data for standard input and/or the destination of data
for standard output and standard error. See sh(1).

The HP-UX operating system. The kernel is the executable code
responsible for managing the computer’s resources, such as allo—
cating memory, creating processes, and scheduling programs for
execution.

An archive file containing a set of subroutines and variables
which may be accessed by user programs. For example,
/lib/libe.a is a library containing all functions of section 2, and all
functions of section 3 marked (3C) and (3S), in the HP-UX
Reference. Similarly, /lib/libm.a is a library containing all func—
tions in section 3 marked (3M) in the HP-UX Reference. See
intro(3).

-8- July 9, 1985

GLOSSARY (9)

LIF

link

linker

logical block size

login

login directory

magic number

major number

GLOSSARY (9)

An acronym for Logical Interchange Format. A standard format
for mass storage implemented on many Hewlett-Packard com-
puters to aid in media transportability. The lift(1) commands
are used to perform various functions using LIF.

A directory entry for any type of file. The information constitut—
ing a link includes the name of the file, and where the contents of
that file may be found on a mass storage medium. One physical
file may have several links to it. If the links appear in different
directories, the file may or may not have the same name in each.
If the links appear in one directory, however, each link must have
a unique name in that directory. Multiple links to directories are
not allowed (except for the super-user). See cp(1), lnk(1),
link(2), and unlink(2). Also, to prepare a program for execution,
see linker.

The linker combines one or more object programs into one pro-
gram, searches libraries to resolve user program references, and
builds an executable file in a.out format. This executable file is
ready to be executed through the program loader, ezec(2). The
linker is invoked with the ld(1) command. The linker is often
called a link editor.

The smallest unit of memory which can be allocated on a Series
500 SDF volume; a multiple of the physical sector size. This
value is set at system initialization time; see sdfinit(1M).

The process of gaining access to HP-UX. This consists of suc—
cessful execution of the login sequence defined by login(1) which
varies depending on the system configuration. It includes pro-
viding a login name and possibly one or more passwords.

The directory in which you are placed immediately after you log
in. This directory is defined for each user in the file /etc/passwd.
The shell variable HOME is set automatically to your login
directory by login(1) immediately after you log in. See home
directory.

The first word of an a.out(5) or archive file. This word contains
the system ID, which tells what machine (hardware) the file will
run on, and the file type (executable, shareable executable,
archive, etc.).

A number used exclusively to create special files that enable I/O
to/from specific devices. This number indicates which device
driver to use for the device. Refer to mknod(1M) and the System
Administrator Manual supplied with your system for details.

message queue identifier A message queue identifier (msqgid) is a unique positive integer

struct
ushort
ushort
ushort
ushort

Hewlett—Packard

created by a msgget(2) system call. Each msqid has a message
queue and a data structure associated with it. The data struc—
ture is referred to as msqid_ds and contains the following

members:
ipc_perm msg__perm; /+ operation permission struct */
msg__qnum; /* number of msgs on q */
msg__qgbytes; /* max number of bytes on q */
msg_lspid; /* pid of last msgsnd operation */
msg.__lIrpid; /* pid of last msgrcv operation */

-9- July 9, 1985

GLOSSARY (9)

message operation permissions

time__t
time_t
time_t

ushort
ushort
ushort
ushort
ushort

metacharacter

Hewlett—-Packard

msg_stime;
msg__rtime;
msg_ctime;

cuid;
cgid;
uid;
gid;
mode;

GLOSSARY (9)

/* last msgsnd time %/

/* last msgrev time */

/* last change time */

/* Times measured in secs since */
/* 00:00:00 GMT, Jan. 1, 1970 %/

Msg_perm is a ipc_perm structure that specifies the message
operation permission (see below). This structure includes the
following members:

/* creator user id */
/* creator group id */
/* user id */

/* group id %/

/* r/w permission */

Msg_qnum is the number of messages currently on the queue.
Msg_gbytes is the maximum number of bytes allowed on the
queue. Msg_lspid is the process id of the last process that per—
formed a msgsnd operation. Msg_Irpid is the process id of the
last process that performed a msgrcv operation. Msg_stime is
the time of the last msgsnd operation, msg_rtime is the time of
the last msgrcv operation, and msg__ctime is the time of the
last msgctl(2) operation that changed a member of the above
structure.

In the msgop(2) and msgctl(2) system call descriptions, the per—
mission required for an operation is given as "{token}”, where
“token” is the type of permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a msqid are granted to a process
if one or more of the following are true:

The process’s effective user ID is super—user.

The process’s effective user ID matches msg_perm.[c]uid
in the data structure associated with msgid and the
appropriate bit of the ‘‘user” portion (0600) of
msg__perm.mode is set.

The process’s effective user ID does not match
msg_perm.[c]uid and the process’s effective group ID
matches msg_perm.[c]gid and the appropriate bit of the
“group” portion (060) of msg_perm.mode is set.

The process’s effective user ID does not match
msg_perm.[c]uid and the process’s effective group ID
does not match msg_perm.[c]gid and the appropriate bit
of the “other” portion (06) of msg_perm.mode is set.

Otherwise, the corresponding permissions are denied.

A character which has special meaning to the HP-UX shell. The
set of metacharacters includes: *, 7, L, [,], <, >,;, I, %, °, ”, and
&. Refer to sh(1) for the meaning associated with each.

-10- July 9, 1985

GLOSSARY (9)

minor number

mode

mountable file system

multi-user state

new-line

node name

Hewlett—-Packard

GLOSSARY (9)

A number used exclusively to create special files that enable I/O
to/from specific devices. This number is passed to the device
driver and is used to select which device in a family of devices is
to be used, and possibly some operational modes. The exact for—
mat and meaning of the minor number is both system and driver
dependent. Refer to the System Administrator Manual supplied
with your system for details. See address.

On the Series 200 and 500, for HP-IB devices, this number indi—
cates the HP-IB address, select code, and the unit and/or volume
numbers.

A 16-bit word associated with every file in the file system, stored
in the i-node. The least-significant 12 bits of this word deter—
mine the read, write, and execute permissions for the file owner,
file group, and all others, and contain the set-user-ID, set—
group-ID, and “sticky” (save text image after execution) bits.
The least-significant 12 bits are settable by the chmod(1) com-
mand if you are the file’s owner or the super—user. The sticky bit
can only be set by the super-user. These 12 bits are sometimes
referred to as permission bits. The most-significant 4 bits specify
the file type for the associated file and are set as the result of
creat(2), open(2), or mknod(2) system calls.

A (blocked special) file system contained on some mass storage
medium with its own root directory and an independent hierar—
chy of directories and files. See block special file and mount(1).

The condition of the HP-UX operating system in which termi-
nals in addition to the system console are allowing communica—
tion between the system and its users. By default, the Series 200
multi-user state is state 2, and the Series 500 multi—user state is
state 1. Do not confuse the multi-user system with the multi-
user state. A multi-user system is a system which may have
more than one user actively communicating with the system
when it is in the multi-user state. Multi-user states—there can
be more than one multi-user state in ¢nittab— remove the
single-user restriction imposed by the single-user state. See
single-user state. See inittab(5).

The character with an ASCII value of 10 (line-feed) used to
separate lines of characters. It is represented by \n in the C
language and in various utilities. The terminal driver (see tty(4))
normally interprets the carriage-return/line-feed sequence sent
by a terminal as a single new-line character.

A string of up to 31 characters, not including control characters
or spaces, that uniquely identifies a node on a Local Area Net—
work (LAN). The node name for each system is set by the
npowerup command, which is one of the commands supplied with
the optional LAN/9000 product. Do not confuse a node name
with a host name, which is a string that uniquely identifies an
HP-UX system on a uucp network. Your node and host names
can be identical, but they are used and set by totally different
software. See host mname, LAN/9000 User’s Guide, and
LAN/9000 Node Manager’s Guide.

-11- July 9, 1985

GLOSSARY (9) GLOSSARY (9)

ordinary file A type of HP-UX file containing ASCII text (e.g. program
source), binary data (e.g. executable code), etc. Ordinary files
can be created by the user through I/O redirection, editors, or
HP-UX commands.

orphan process Whenever a parent process terminates for any reason and leaves
behind one or more child processes that are still active, those
child processes are called orphan processes. Init(1M) inherits
(becomes the effective parent of) all orphan processes.

OSF An acronym for Operating System File. An OSF resides in the
SDF boot area on a Series 500 system, and contains all or part of
an operating system. See osmgr(IM), oscp(1M), osck(1M), and
osmark(1M).

owner The owner of a file is usually the creator of that file. However,
the ownership of a file can be changed by the super-user or the
current owner with the chown(l) commana or the chown(2) sys—
tem call. The file owner is able to do whatever he wants with his
files, including remove them, copy them, move them, change
their contents, etc. He is also able to change the files’ modes.

parent directory A directory’s parent directory is the directory one level above it
in the file hierarchy. All directories except the root directory (/)
have one (and only one) parent directory. The parent directory
is sometimes referred to as the superior directory.

parent process Whenever a new process is created by a currently—existing pro-
cess (via fork(2) or ufork(2)), the currently-existing process is
said to be the parent process of the newly-created process.
Every process has exactly one parent process (except the init
process - see init), but each process can create several new
processes with the fork(2) system call. The parent process ID of
any process is the process ID of its creator.

password A string of ASCII characters used to verify the identity of a user.
Passwords can be associated with users and groups. If a user has
a password, it is automatically encrypted and entered in the
second field of that user’s line in the /etc/passwd file. A user
may create or change a password for himself with the passwd(1)
command.

path name (sometimes written as one word, pathname). A sequence of
directory names separated by slashes, and ending with any file
name. All file names except the last in the sequence must be
directories. If a path name begins with a slash (/), it is an abso-
lute path name (see absolute path name); otherwise it is a relative
path name (see relative path mame). A path name defines the
path to be followed through the hierarchical file system in order
to find a particular file.

More precisely, a path name is a null-terminated character string
constructed as follows:

<path-name>::=<file-name>|<path-prefix><file-name>|/
<path-prefix>::=<rtprefix>|/<rtprefix>
<rtprefix>::=<dirname> /| <rtprefix><dirname>/

Hewlett—Packard -12 - July 9, 1985

GLOSSARY (9)

permission bits

pipe

privileged groups

procl

process

process group

process group ID

process group leader

Hewlett—Packard

GLOSSARY (9)

where <file-name> is a string of 1 to 14 characters other than
the ASCII slash and null, and <dirname> is a string of 1 to 14
characters (other than the ASCII slash and null) that names a
directory or network special file with RFA (Remote File Access).

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated
as if it named a non-existent file.

The nine least-significant bits of a file’s mode. These bits deter—
mine read, write, and execute permissions for the file’s owner, the
file’s group, and all others. See chmod(2) for further details.

An inter-process I/O channel used to pass data between two
processes. It is commonly used by the shell to transfer data from
the standard output of one process to the standard input of
another. On a command line, a pipe is signaled by a vertical bar
(1). The output from the command(s) on the left of the vertical
bar is channeled directly into the standard input of the
command(s) on the right. The pipe(2) intrinsic function allows
user programs to take advantage of this feature.

A privileged group is a group which has had a setprivgrp (see
getprivgrp(2)) operation performed on it giving it access to some
system calls otherwise reserved for the super-user.

See init.

An invocation of a program, or the execution of an image. No
command can be executed without a process in which it can exe-
cute. Alternately, a process cannot exist without a command or
image in some stage of execution. Several processes can all be
running the same program, but each may have different data and
be in different stages of execution.

An association of one or more processes is called a process group.
A process’s membership in a particular process group is esta—
blished by a numerical process group ID. Each process can
belong to only one process group. Every process group has a
process group leader. See process group ID and process group
leader.

A positive integer in the range 1 - 30000 associated with every
active process, which establishes that process’s membership with
a particular process group. All members of a process group have
the same process group ID. A process group ID is always the
process ID of the process group leader. This grouping permits
the signalling of related processes. See kill(2), process group, and
process group leader.

A process group leader is a process whose process group ID and
process ID are equal. A process becomes a process group leader
through the setpgrp(2) system call. All processes created by the
process group leader become members of that process group. All
processes created by the init process (see init) are process group
leaders. For example, when you log in on the system, the shell
you receive to interpret your commands is a process group leader,
and all subsequent process’s created by your shell are members of

-13- July 9, 1985

GLOSSARY (9)

process ID

program

prompt

quit signal

raw disc

real group ID

real user ID

Hewlett—Packard

GLOSSARY (9)

your shell’s process group. See process group ID and process
group.

Each active process in the system is uniquely identified by a
positive integer called a process ID. The range of this ID is from
1 to 30000. This permits the selective sending of signals to
processes with kill(1), kill(2), or signal(2). The process ID of any
user process is available with the ps(1) command. If a back-
ground process is created, the shell reports its process ID to you
when execution has begun.

A sequence of instructions, either binary (as machine object code)
or text (as source code or shell scripts), that define an algorithm
that can be carried out by a computer. C, FORTRAN, Pascal,
and BASIC source; awk source; shell scripts; and executable
object (a.out(5)) are all examples of programs.

The character(s) displayed by the shell on the display indicating
that the system is ready for a command. The prompt is usually
a dollar sign ($) for ordinary users and a pound sign (#) for the
super-user, but the user can re-define it to be any string by set—
ting the shell variable PS1 in his .profile file.

The signal sent by SIGQUIT. See signal(2). The quit signal is
generated by typing the character defined by the teletype handler
as your quit signal. (See stty(1), ioctl(2), and termio(4).) The
default is the ASCII FS character (ASCII value 28, generated by
typing [CONTROLJ-[\].) This signal usually causes a running
program to terminate and generates a file containing the “core
image” of the terminated process. The core image is useful for
debugging purposes. (Some systems do not support core images,
and on those systems no such file is generated.)

The name given to a disc for which there exists a character spe-
cial file which allows direct transmission between the disc and the
user’s read or write buffer.

A positive integer which is assigned to every user on the system.
The association of a user and his real group ID is done in the file
/ete/passwd. The modifier “real” is used because a user can also
have an effective group ID (see effective group ID). The real
group ID can then be mapped to a group name in the file
/ete/group, although it need not be. Thus, every user is a
member of some group (which may be nameless), even if that
group has only one member.

Every time a process creates a child process (via fork(2)), that
process has a real group ID equal to the parent process’s real
group ID.

A positive integer which is assigned to every user on the system.
A real user ID is assigned to every valid login name in the file
/ete/passwd. The modifier “real” is used because a user can also
have an effective user ID (see effective user ID).

Every time a process creates a child process (via fork(2)), that
process has a real user ID equal to the parent process’s real user
ID.

- 14 - July 9, 1985

GLOSSARY (9)

regular expression

relative path name

root directory

root volume

saved user ID

saved group ID

SCCS

Hewlett—Packard

GLOSSARY (9)

A string of zero or more characters; the characters contained in
the string may all be literal, which means that the regular
expression matches itself only, or one or more of the characters
may be a metacharacter, which means that a single regular
expression could match several literal strings. Regular expres—
sions are most often encountered in text editors (ed(1), ez(1),
vi(1)), where searches are performed for a specific piece of text,
or in commands that were created to search for a particular
string in a file (most notably grep(1)). Sh(1) and csh(1) also use
metacharacters to match one or more patterns; this is a different
mechanism that regular expressions. See ed(1).

A path name that does not begin with a slash. It indicates that
a file’s location is given relative to your current working direc—
tory, and that the search begins there (instead of at the root
directory). An example is dirl/file2, which searches for the
directory dirl in your current working directory. Dirl is then
searched for the file file2.

1) The highest level directory of the hierarchical file system, from
which all other files branch. In HP-UX, the "/” character refers
to the root directory. The root directory is the only directory in
the file system which is its own parent directory.

2) Each process has associated with it a concept of a root direc—
tory for the purpose of resolving path name searches for those
paths beginning with “/”. A process’s root directory need not be
the root directory of the root file system, and can be changed by
the chroot(1) command or chroot(2) system call. Such a direc—
tory appears to the process involved to have .. pointing to itself.

The mass storage volume which contains the boot area (which
contains the HP-UX kernel) and the root directory of the HP-
UX file system.

Every process has a saved user ID which retains the process’s
effective user ID from the last successful ezec(2), or from the last
super-user call to setuid(2). Setuid(2) permits a process to set its
effective user ID to this remembered value. Consequently, a pro—
cess which executes a program with the set—user-ID bit set and
with an owner ID of 5 (for example) can set its effective user ID
to 5, or to its real user ID, any time until the program ter—
minates. See ezec(2), setuid(2), saved group ID, effective user
ID, and set-user—ID bit.

Every process has a saved group ID which retains the process’s
effective group ID from the last successful ezec(2), or from the
last super—user call to setgid. Setgid permits a process to set its
effective group ID to this remembered value. Consequently, a
process which executes a program with the set—group-ID bit set
and with a group ID of 5 (for example) can set its effective group
ID to 5, or to its real group ID, any time until the program ter—
minates. See ezec(2), setuid(2), saved user ID, effective group
ID, and set-group-ID bit.

An acronym for Source Code Control System. The Source Code
Control System is a set of HP-UX commands which enable you
to store changes to an SCCS file as separate “units” (called

-15- July 9, 1985

o~

GLOSSARY (9)

SCCS file

SDF

secondary prompt

select code

semaphore identifier

Hewlett—Packard

struct
ushort
time__t
time__t

GLOSSARY (9)

deltas). These units, each of which contains one or more textual
changes to the file, can then be applied to or excluded from the
SCCS file to obtain different versions of the file. The commands
that make up SCCS are admin(1), cdc(1), delta(1), get(1), prs(1),
rmdel(1), sact(1), sccsdiff(1), unget(1), val(1), and what(1). See
delta, SCCS file.

An ordinary text file which has been modified so that the Source
Code Control System (SCCS) may be used with it. This
modification is done automatically by the admin(l) command.
See SCCS, delta.

An acronym for Structured Directory Format. SDF is imple-
mented on the Series 500 computers only, and provides tree-
structured access to files through the root directory of the
volume.

One or more characters that the Bourne shell si(1) prints on the
display, indicating that more input is needed. This prompt is
much less often encountered than the shell’s primary prompt (see
prompt). When it occurs, it is usually caused by an omitted
right quote on a string (which confuses the shell), or when you
enter a shell programming language control-flow construct (such
as a for construct) from the command line. By default, the
shell’s secondary prompt is the greater-than sign (>), but you
can re-define it by setting the shell variable PS2 appropriately
in your .profile file.

On the series 200 and 500 part of an address used for devices. A
number determined by a setting on the interface card to which a
peripheral device is connected, or by the particular I/O slot the
I/O card resides in. Multiple peripherals connected to the same
interface card share the same select code.

A semaphore identifier (semid) is a unique positive integer
created by a semget(2) system call. Each semid has a set of
semaphores and a data structure associated with it. The data
structure is referred to as semid_ds and contains the following
members:

ipc_perm sem__perm; /* operation permission struct %/

sem__nsems; /* number of sems in set %/
sem__otime; /* last operation time */
sem__ctime; /#* last change time */

/* Times measured in secs since %/
/* 00:00:00 GMT, Jan. 1, 1970 x/

Sem__perm is a ipc_perm structure that specifies the sema-
phore operation permission (see below). This structure includes
the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id %/
ushort uid; /* user id %/

ushort gid; /* group id */

ushort mode; /* r/a permission */

The value of sem_nsems is equal to the number of semaphores
in the set. Each semaphore in the set is referenced by a positive

-16 - July 9, 1985

GLOBSARY (9)

GLOSSARY (9)

integer referred to as a sem_num. Sem_num values run
sequentially from 0 to the value of sem_nsems minus 1.
Sem__otime is the time of the last semop(2) operation, and
sem_ctime is the time of the last semctl(2) operation that
changed a member of the above structure.

A semaphore is a data structure that contains the following
members:

ushort semval; /* semaphore value */

short sempid; /* pid of last operation */
ushort semncnt; /* # awaiting semval > cval */
ushort semzcnt; /* # awaiting semval = 0 %/

Semval is a non-negative integer. Sempid is equal to the pro-
cess ID of the last process that performed a semaphore operation
on this semaphore. Semncnt is a count of the number of
processes that are currently suspended awaiting this semaphore’s
semval to become greater than its current value. Semzcnt is a
count of the number of processes that are currently suspended
awaiting this semaphore’s semval to become zero.

semaphore operation permissions

set-group-ID bit

Hewlett-Packard

In the semop(2) and semctl(2) system call descriptions, the per—
mission required for an operation is given as “{token}”, where
“token” is the type of permission needed interpreted as follows:

00400 Read by user
00200 Alter by user
00060 Read, Alter by group
00006 Read, Alter by others

Read and Alter permissions on a semid are granted to a process
if one or more of the following are true:

The process’s effective user ID is super-user.

The process’s effective user ID matches sem__perm.[c]uid
in the data structure associated with semid and the
appropriate bit of the ‘“user” portion (0600) of
sem__perm.mode is set.

The process’s effective user ID does not match
sem__perm.[c]uid, and either the process’s effective group
ID matches sem__perm.[c]gid or sem_perm.[c]gid is in
the process’s group access list, and the appropriate bit of
the “group” portion (060) of sem__perm.mode is set.

The process’s effective user ID does mnot match
sem__perm.[c]uid, and the process’s effective group ID
does not match sem_perm.[c]gid and neither is
sem__perm.[c|gid in the process’s group access list, and
the appropriate bit of the “other” portion (06) of
sem__perm.mode is set.

Otherwise, the corresponding permissions are denied.

A single bit in the mode of every file in the file system. If a file is
executed whose set—group—ID bit is set, then the effective group
ID of the process which executed the file is set equal to the real

-17- July 9, 1985

GLOSSARY (9)

set-user-ID bit

shared memory identifier

struct
int
ushort
ushort
short
time_t
time__t
time__t

GLOSSARY (9)

group ID of the owner of the file. See effective group ID, group,
and real group ID.

A single bit in the mode of every file in the file system. If a file is
executed whose set—user-ID bit is set, then the effective user ID
of the process which executed the file is set equal to the real user
ID of the owner of the file. See effective user ID and real user
ID.

A shared memory identifier (shmid) is a unique positive integer
created by a shmget(2) system call. Each shmid has a segment
of memory (referred to as a shared memory segment) and a data
structure associated with it. The data structure is referred to as
shmid__ds; some of its members are:

ipc_perm shm__perm; /* operation permission struct %/

shm__segsz; /* size of segment */

shm__cpid; /* creator pid */

shm__lpid; /* pid of last operation */

shm nattch; /* number of current attaches %/
shm__atime; /* last attach time =/
shm__dtime; /* last detach time */
shm__ctime; /#* last change time */

/* Times measured in secs since */

/* 00:00:00 GMT, Jan. 1, 1970 */
Shm__perm is a ipc_perm structure that specifies the shared
memory operation permission (see below). This structure
includes the following members:

ushort cuid; /* creator user id */
ushort cgid; /* creator group id */
ushort uid; /* user id */

ushort gid; /* group id */

ushort mode; /* r/w permission */

Shm__segsz specifies the size (in bytes) of the shared memory
segment. Shm__cpid is the process id of the process that
created the shared memory identifier. Shm_lpid is the process
id of the last process that performed a shmop(2) operation.
Shm__nattch is the number of times the segments are currently
attaching to other processes. Shm__atime is the time of the last
shmat operation, shm_dtime is the time of the last shmdt
operation, and shm_ctime is the time of the last shmctl(2)
operation that changed one of the members of the above struc-
ture.

shared memory operation permissions

Hewlett—Packard

In the shmop(2) and shmctl(2) system call descriptions, the per—
mission required for an operation is given as “{token}”, where
“token” is the type of permission needed and is interpreted as
follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

-18 - July 9, 1985

GLOSSARY (9)

shell

shell program

shell script

signal

single-user state

special file

Hewlett—Packard

GLOSSARY (9)

Read and Write permissions on a shmid are granted to a process
if one or more of the following are true:

The process’s effective user ID is super—user.

The process’s effective user ID matches shm__perm.[c]uid
in the data structure associated with shmid and the
appropriate bit of the ‘“user’” portion (0600) of
shm__perm.mode is set.

The process’s effective user ID does mnot match
sem_perm.[c]uid, and either the process’s effective group
1D matches sem__perm.[c|gid or sem_perm.[c]gid is in
the process’s group access list, and the appropriate bit of
the “‘group’” portion (060) of sem_perm.mode is set.

The process’s effective user ID does mnot match
sem_perm.[c]uid, and the process’s effective group ID
does not match sem_perm.[c]gid and neither is
sem__perm.[c]gid in the process’s group access list, and
the appropriate bit of the ‘“other” portion (06) of
sem__perm.mode is set.

Otherwise, the corresponding permissions are denied.

A shell is a command which functions as both a command inter—
preter and an interpretive programming language. A shell is
usually automatically invoked (via /ete/passwd)foreveryuserwho
in order to provide a user—interface to the HP-UX operating sys—
tem. See sh(1), csh(1), or rsh(1), and the tutorials supplied with
your system for details.

See shell script.

A sequence of shell commands and shell programming language
constructs stored in a file and invoked as a user command (pro-
gram). No compilation is needed prior to execution, because the
shell recognizes the commands and constructs that make up the
shell programming language. A shell script is often called a shell
program or a command file. See the shell programming article
included in HP-UX Concepts and Tutorials.

Signals are software interrupts sent to processes, informing them
of special situations or events. They are frequently used to syn—
chronize the operation of two or more processes. See signal(2)
and kul(2).

A condition of the HP-UX operating system in which the system
console provides the only communication mechanism between the
system and its user. By default, the Series 200 single—user state
is state 1, and the Series 500 multi-user state is state 2. Do not
confuse the single-user state, in which the software is limiting a
multi-user system to a single-user communication, with a
single-user system, which can never communicate with more
than one fixed terminal. See multi-user state.

Often called a device file, this is a file associated with an I/O
device. Special files are read and written just like ordinary files,
but requests to read or write result in activation of the associated
device. Most standard special files reside in /dev; however,

-19 - July 9, 1985

GLOSSARY (9)

spectal processes

standard error

standard input

standard output

stream

sticky bit

sub-directory

subordinate directory

super block

Hewlett—Packard

GLOSSARY (9)

network special files reside in /net, and fifo special files can exist
in any directory.

Processes with certain (small) process ID’s are special. On a
typical system, the ID’s of 0, 1, and 2 are assigned as follows:
Process 0 is the scheduler. Process 1 is the initialization process
init, and is the ancestor of every other process in the system. It
is used to control the process structure. On paging systems with
virtual memory process 2 is the paging daemon.

On the Series 500, there is no process 0 and the scheduler does
not exist as an identifiable entity. The paging demon also does
not exist as an identifiable entity.

The destination of error and special messages from a program.
The standard error file is often called stderr, and is automatically
opened for writing on file descriptor 2 for every command
invoked. By default, the user’s terminal is the destination of all
data written to stderr, but it can be redirected elsewhere.

The source of input data for a program. The standard input file
is often called stdin, and is automatically opened for reading on
file descriptor 0 for every command invoked. By default, the
user’s terminal is the source of all data read from stdin, but it
can be redirected from another source.

The destination of output data from a program. The standard
output file is often called stdout, and is automatically opened for
writing on file descriptor 1 for every command invoked. By
default, the user’s terminal is the destination of all data written
to stdout, but it can be redirected elsewhere.

A term most often used in conjunction with the standard 1/O
library routines documented in section 3 of this manual. A
stream is simply a file pointer (declared as FILE #stream)
returned by the fopen(3S) library routines. It may or may not
have buffering associated with it (by default, buffering is
assigned, but this may be modified with setbuf(3S)).

A single bit in the mode of every file in the file system. If set,
then the data structure and heap storage for the text portion of
the file is retained even if no process is currently attaching
(using) to it. The objective is to reduce startup time of future
processes that may use the same text file. Only the super-user
can set the sticky bit. The sticky bit is read each time the file is
executed (via ezec(2)).

A directory that is one (or perhaps more) levels lower in the file
system hierarchy than a given directory. Sometimes called a
subordinate directory.

See sub-directory.

A block on each file system’s mass storage medium which
describes the file system. The contents of the super-block vary
between implementations. Refer to the System Administrator
Manual supplied with your system, and the appropriate fs(5)
entry for details.

-20- July 9, 1985

GLOSSARY (9)

super—user

superior directory

system call

system console

terminal affiliation

terminal group

Hewlett-Packard

GLOSSARY (9)

The HP-UX system administrator. This user has access to all
files, and can perform privileged operations. He has a real and
effective user ID of 0, and, by convention, the user name of root.

See parent directory.

An HP-UX operating system kernel function available to the
user through a high-level language (such as FORTRAN, Pascal,
or C). Also called an “intrinsic” or a “system intrinsic”. The
available system calls are documented in section 2 of the HP-UX
Reference manual.

A keyboard and display (or terminal) given a unique status by
HP-UX and associated with the special file /dev/console. All
boot ROM or system loader error messages, HP-UX system error
messages, and certain system status messages are sent to the sys—
tem console. Under certain conditions (such as the single-user
state), the system console provides the only mechanism for com-
municating with HP-UX. See HP-UX Concepts and Tutorials
and the System Administrator Manual provided with your system
for details on configuration and use of the system console.

The means by which a process group leader establishes an associ—
ation between itself and a particular terminal. A terminal
becomes affiliated with a process group leader (and subsequently
all processes created by the process group leader - see terminal
group) whenever the process group leader executes (either
directly or indirectly) an open(2) or creat(2) system call for that
a terminal. Then, if the process which is executing open(2) or
creat(2) is a process group leader, and if that process group
leader is not yet affiliated with a terminal, and if the terminal
being opened is not yet affiliated with a process group, the
affiliation is established.

An affiliated terminal keeps track of its process group affiliation
by storing the process group’s process group ID in an internal
structure.

Two benefits are realized by terminal affiliation. First, all signals
sent from the terminal are sent to all processes in the terminal
group. Second, all processes in the terminal group can perform
I/O from/to the generic terminal driver /dev/tty, which
automatically selects the affiliated terminal.

Terminal affiliation is broken with a terminal group when the
process group leader terminates, after which the hangup signal is
sent to all processes remaining in the process group. Also, if a
process (which is not a process group leader) in the terminal
group becomes a process group leader via the setpgrp(2) system
call, its terminal affiliation is broken.

See process group, process group leader, terminal group, and
setpgrp(2).

A terminal group is a process group whose process group leader
has established affiliation with a particular terminal. Once a
process group leader has established affiliation with a terminal,
all processes in that process group created after the affiliation

-21- July 9, 1985

GLOSSARY (9)

tty group ID

untt number

volume number

working directory

zombie process

Hewlett—Packard

GLOSSARY (9)

are members of that terminal group. Processes existing before
and during the time when affiliation is established do not inherit
the affiliation, and are thus not part of the terminal group. A
terminal group is sometimes called a tty group.

This grouping is used to terminate a group of related process
upon termination of one of the processes in the group; see exit(2)
and signal(2).

See process group, process group leader, terminal affiliation, and
setpgrp(2).
See terminal group.

Part of an address used for devices. A number whose meaning is
software- and device-dependent, but which is often used to
specify a particular disc drive in a device with a multi-drive con—
troller. See the System Administrator Manual supplied with your
system for details.

Part of an address used for devices. A number whose meaning is
software- and device-dependent, but which is often used to
specify a particular volume on a multi-volume disc drive. See
the System Administrator Manual supplied with your system for
details.

Each process has associated with it the concept of a current
working directory. For a shell, this appears as the directory in
which you currently reside. This is the directory in which rela-
tive path name (i.e. when a given path name does not begin with
”/") searches begin. It is sometimes referred to as the current
directory, or the current working directory.

The state of a process where the only system resource allocated
to it is a slot in the process table data structure. This state is
arrived at when the process is being terminated. It is a harmless
occurrence which rectifies itself the next time that the parent
process waits. The ps(1) command lists zombie processes as
“<defunct>".

-22 - July 9, 1985

PERMUTED INDEX

[ettt e AR Ea bbbt et a ettt st e s test(1)
a64] ... a641(3C)
abort . abort(3C)
ADS i, ... abs(3C)

absolute value, floating point . floor(3M)

absolute value, integer abs(3C)
ACCESS .evviereerrerreseestireeseseessess et eseere s et en .. access(2)
access long integer data in machine-independent mannerccccoecvrvceiniinciiinenciee sputl(3X)
access modes, change MEMOrY SEZMENE ..cc..eiroueerirerrriririiereereerreeeeessrensresseenseeessessseessesnnesnees memchmd(2)
access terminfo database tput(1)
access utmp file entry getut(3C)

accessing discs, description of blocked/unblocked disc interfacecooeveeviiiiveiiiiiiciciiiiiiiineeieens disc(4)
accounting commands, miscellaneous . acct(1M)

accounting commands, overview acct(1M)
accounting commands, process acctcom(1)
accounting: connect-timeccoceevviiiiiiieiiiiiiiicnnnees acctcon(1M)

accounting, convert binary wtmp records to ASCII fwtmp(1M)
accounting, correct time/date stamps on wtmp records fwtmp(1M)
accounting: dailyceeevevreininneniieeec e runacct(1M)
accounting file format ..o e acct(5)

accounting files: merge or add total acctmerg(1M)
accounting: generate disc usage data by User IDccccvevieeeiiviieeriieiieneeneere e diskusg(1M)
2CCOUNtING: PIrOCESS ACCOUNTINE ..eovveeviririieetietierieeiteieerteeteeatetesteeees e besseeseeneesesesaesaesaeeseeusenseens acctpre(1M)
accounting, record login names and times utmp(5)
accounting records command SUMMATYccccuviuriimiiriniiininiese e acctems(1M)
accounting: shell ProCEdUIESccoiiieriiiiriniiiiiet ettt ettt acctsh(1M)
acctems acctems(1M)
FE Y16 74703 o OO OO POTEPOUOP RPNt acctcom(1)
accteon acctcon(1M)
ACCEAISK ettt acct(1M)
ACCHAUSE -vveetiat ettt ettt ettt h ettt ettt st e b et e bt e bt e e b et et bt et b sttt ae bt n e n e acct(1M)
acctmerg acctmerg(1M)
BCCEOIL 11utiatiniieti ittt ettt r et a e neea acct(1M)
acctpre ... acctpre(1M)
acctsh acctsh(1M)
ACCEWEIILD vviviiirett ittt s et ettt sa e acct(1M)
BCOS +vvurenemrrentemeaeereueeeestaseseaesseteat et ettt s b e st eb et e s s st eaan s e eA e Rese et b ea et R st a e s e s st ebeeen e et s en e et tn e eaetenennene trig(3M)
activity, terminate all current system activity shutdown(1M)
AAD ittt st ettt adb(1)
add a swap device for interleaved paging/signallingccccceverreeririenenieniiicice e swapon(2)
add backing store deviCescoiiiiiiiiiiiiiicii e vson(2)
add or change environment value putenv(3C)
add or merge total accounting files . acctmerg(1M)
address space, allocate and free memalle(2)
address space, lock/unlock for process .. memlck(2)
addresses, get for program end(3C)
AAJUSE weviiiietii e e e et e b e b st s an e b adjust(1)
AAIMIIL et admin(1)
advance regexp(7)
advise OS about segment reference patternsccoccoeveeiiiieiiiiiincciine e memadvise(2)
ALATIN et e st alarm(2)
alarm clock, set ... alarm(2)
allocate a block of MEMOTY ..c.eociiiiiiiiiiiiii e malloc(3C)
allocate and free address SPACEccoveiiiiiiiciiiiiiiie e memalle(2)
allocate backing store space to backing store device ... vsadv(2)
allocate data segment SPACE fOr PrOCESS ...c.cvievceeriiirrrieeiierieeierrtte sttt ettt e st e s sreebesvnesaene e neennee brk(2)

Permuted Index

a.out file format, desCriPtION Ococceeiiirieiiireiiiieeeerte ettt et sae et e a s e be e saeenaenne a.out(5)
append to an existing operating system .. oscp(1M)
appointments, reminder service for ... calendar(1)

AT euiietenestetee ittt bt s et e e et e e Rtk e e bR e Rttt e h et bRt st seE e bRt e R et R ettt e ne et b e aen st she st eseneas ar(1)

arc cosine function . trig(3M)
arc sine function trig(3M)
arc tangent function trig(3M)
archive, conversion t0 NeW fOrMAabcooeviiiiiiiiiiniiiiiiiic e arcv(l)
archive file format, description ofcccoiviiiiiiiiiini ar(5)
archive file format, description of cpio archive file format cpio(5)
Archive f1168 0N BAPE ..veviviviiiiiciiie et ettt tar(1)
archive library, find ordering relation fOrc..ccccoviriireirierininiiereeer e e lorder(1)
archive, table of contents format description ranlib(5)

archives and libraries, create and maintaincc.ccveecviiiiniiini e ar(1)
archives, copy out to mediaceeeenenne ... cpio(1)
archives, extract archive files from media ... cpio(1)
BICV 1oittiteteaeste sttt s s e e e s bt es e sttt s et a e ek hea ke b stk ettt b et h s s e e st h st st et re e b s arcv(1)
argument list handling facility, variable varargs(7)
argv, get next option letter fTOMcoceieiriiiieiiicieit ettt sttt sbesbenee getopt(3C)
array, allocate Memory SPace fOrccoviiiiiiiiiiiiiii e malloc(3C)
array, print formatted data into .. . printf(3S)
array, read and format data from scanf(3S)
BS ettt L ettt b e e a et et et h e h bR ea bk e bR SRR SRR et e R e s b et naene s as(1)
BSA .eeeerieieire et s asa(1)
ASA carriage control characters, interpretc.cc.cccoeueeee. asa(1)
BSCIL tuvtiireetiiet et b bbb e et b et ettt s e ennene ascii(7)
ASCII, convert base 64 ASCII to long integer a641(3C)
ASCII, convert binary wtmp records to fwtmp(1M)
ASCII, convert floating point value to ecvt(3C)
ASCII, convert non-ASCII to ASCII . conv(3C)
ASCII, convert to numbers atof(3C)
asctimeooveeveiviiriiiiiins ctime(3C)
BSII1 oottt ettt et h et h etttk a bbb e et h ettt b e e st saan trig(3M)
assembler for MCB8000cooviiiiiiiiiiiei ettt as(1)
assembler/linker executable output file, description of .. a.out(5)
assembly 1anguage, tTanSIateoceceeririeeiiesieeiiresier e se et st ses et st sbbene et e aa et naeseenes atrans(1)
ASSEIT vevvetereteiruesetetesestesseeseeatesersetesseseae et e s et e s etese st ebese s e s ek e Re e s ek e e e R e Rt e hene b ekt eeeh e sseae s en et etennetes assert(3X)

assign buffering to an open file . . setbuf(3S)

assistance, get for SCCS help(1)
assure sufficient signal stack space .. sigspace(2)
asynchronous terminal emulation aterm(1)

.. at(1)
trig(3M)
trig(3M)
aterm(1)
atof(3C)
atof(3C)
atof(3C)
... atof(3C)
AETAIIS ©utueeuenieetiteteteteetetene et e stete b etesees e e st euen e s et e er e es et et e bRt e b st et ae et ene bk e ekttt et aeh et es atrans(1)
attributes, change program’s INEEINAlc.cccciveeiieirirerinicitene ettt st s chatr(1)
automatically release blocked signals and wait for interrupt sigpause(2)

.. awk(1)
backing store devices, add/remove device from those available ... vson(2)
backing store devices, allocate backing store SPACE tOccceevverireesiiriienirriiiiere et vsadv(2)

9.

Permuted Index

backing store usage, advise system aboutccccviiiiiiiiiiii s vsadv(2)
backspaces and reverse line-feeds, interpret for nroff(1) col(1)
DACKUD wuvviviiiiniiiitietctiitits et bbbt n backup(1M)
backup Command Set 80 cartridge tapeccccevivieiviiiiiiiin s teio(1)
backup or archive file system backup(1M)
DAIIIET ©viiiiiiiiiiitiiic e bbbt a b a e b banner(1)
banners, make using 1arge 1etters ..o banner(1)
base-64 ASCII, convert t0 1ong INEEZELccoereeviiriiiiirienieenieiciiee et s a641(3C)

basenamec.coceeereerenienenenienennenn basename(1)
baud rate, settings for terminal . .. tty(4)
beheckre i bre(1M)

BAHE v ... bdiff(1)
Bell file system consistency check and interactive repair biffsck(1)
Bell file system, CONStIUCtccovivveriiiininiiiiiciienes ... bifmkfs(1)
Bell file system debugger biffsdb(1)
Bell Interchange Format file UtILEIES c..ovviveiiiiiiiiiiii i bif(5)
Berkeley compatibility for magnetic tape, description ofcccocceeviiiinieiiiinininiiiin mt(4)
bessel functions bessel(3M)
DES e bbbt et beae s bfs(1)
BIIT dITCOTY, LISt vevvivieeeiteieteiiiterieiet ettt ettt et r ettt et s sae st e eas s s ene s bifls(1)
BIF directory, make . bifmkdir(1)
BIF file, Change mMOde Ofoc.eviriereiiiniereiciiieteienteiereeieiene et r st esessenens bifchmod(1)
BII fI1€ COPY cevvervrereenreereeriietenteeteteree e aeetestesaeete st benseaseesaenaeaseenbesateseesenseessessessensbenesseeseesnennnesnns bifep(1)
BIF files Or direCtOries, TEIMOVEc.ciueiiertirieteeieiirieneieteetet et st ettt se et ebesbess et er s saes e ses e aeeaes bifrm(1)
bifchmodcccoovviniiiiiiiins ... bifchmod(1)
bifchown bifchown(1)
DEECD oottt sttt bbb e bbbt n bbb bifep(1)
bifdf bifdf(1)
biffind . biffind(1)
biffls biffls(1)
biffsck . biffsck(1)
DITSAD ©eoveeteteiietcieeietet ettt bbbt biffsdb(1)
DIIIKAIE coviteteiet ettt ettt ettt s bifmkdir(1)
bifmkfs bifmkfs(1)
DIETIIL ottt e bifrm(1)
DIg fIle SCANIIET ...uviuiiiiiiiiiiiii ittt st et sa e bfs(1)
binary search on a sorted table bsearch(3C)
bit bucket, special file €qUIVALENE £0 .cc.iviiiiiiiiriiieieee s null(4)
block of memory, alloCatecccoovieiiiiiiiiiiiiii e malloc(3C)
block of memory, change size of . malloc(3C)
block of memory, deallocate malloc(3C)
block signalscccoveviciiiiiiiiiiiicnnns .. sigblock(2)
block size, find for mounted file SYStEmMcccoviviiiiriiiiiiiii ustat(2)
block special file, createc.ccccoeeuneeee mknod(2), mknod(1M)
blocked disc interface, description of ..o disc(4)
blocked signals, release and wait for interrupt sigpause(2)
blocks, find number of free blocks for mounted file system ustat(2)
blocks, report number of free disc blockscoocivviiiiiiiiiiii df(1M)
boot area, allocate Dytes fOrcccivviiiiiiiiiiiiiiiiiie e sdfinit(1M)
boot area, copy OS from one or more SDF boot areas to another . oscp(1M)
boot area, set or get current settings for system parameters inc.cccoceeeverveeniieneciinneeninnn uconfig(1M)
BIC ettt ekttt ettt ea s bre(1M)
DIEAK .evviitteeeteiietet ettt ettt bbbt bttt s st et n e e s en s sh(1)
break value, get maximum for Processc.cocveviiiiiiiniiiiiini ulimit(2)
break valle, SEt OF Gt .ovveviiiiiiriiieiiicte ettt s brk(2)

Permuted Index

break-point debugging, enable for child Processccccoveeveeeiiiiuiniiiiiiiiiincccee e ptrace(2)
brk(2)
DSEATCR 1.eiiieiiiiete ettt a ettt b bbb a st bsearch(3C)
buffered file I/O package, deSCription Ofc.cccevirieeeirireerrereirecitrccee e stdio(3S)
buffering, assign to open file .. setbuf(3S)
buffers, flush those associated with an open filecccoveveeeeuerircnirieneneecercc e fclose(3S)
byte offset of next I/O operation on file, Stoereiriviiineniiiiicic fseek(3S)
byte SWapPINg «...eoveveeereneereerenereneesreneennaes ... swab(3C)
(O T6341431 L OO OO O OO RORERO ce(1)
C compiler, PreproCessOr fOIoiiiiiiiiriiriieeritirteeie et sse et ee et ea e saeeeene e eaneseraeenns cpp(1)
C flow graph, generate cflow(1)
C DPreprocessorcc...... ... cpp(1)
C program checker/VETIfIErcoceciuiiieinininiieiiiine ettt e lint(1)
C program, error message generator for perror(3C)
C Program fOTTALEETc.eeeuiierieiieieeete sttt ettt e e st e e st e e et e e e ste st ebe s et eneessentesesbesesetenias cb(1)
cache buffers, specify size and number of ... uconfig(1M)
calendarcoeeeeneevininiei e ... calendar(1)
call another UNIX/HP-UX SYSEEIN ...ccecivueueiririieniciiiniiteieeeeieiesaescsisnesaessn s s iesssssasnesissssees cu(1)
CAILOC ceviieteet ettt ettt ettt bbbt bbbttt a e e bt bt ea et ettt et ene e bt e b et s nenen malloc(3C)
CAPLOIIIO 1.vovceertiieeieteieete ettt te sttt et ettt et er st sn et saeae et es e b ea et en e s s b se s sabens captoinfo(1M)
carriage control characters, interpret ASA . asa(1l)
cartridge tape, Command Set 80 ULILIEYeeverrrieererriirieeeienieere et tcio(1)
cartridge tape INItIaAliZAtIONccoviireeiiiiiiieeeieeeee et r e
cartridge tape, perform input/output from/to
cartridge tape, unpack/extract files from Command Set 80ccceeuiviiiivcriiinieciniiieciicee upm(1)
CAE ettt ettt ettt e ettt be bt sene et nanat cat(1)
cat, compress, uncompress files . compact(1)
catManccoveevvienieniiiceeninene .. catman(1M)
catread .. catread(3C)
CD et a et n cb(1)

€O teremeeritereetesest et es et et e et s b et b et et h e e et e h ke e R Rt e et e b e R bttt e R R s et h R a st a e sh s ce(1)

ccat compact(1)
cd ¢d(1), sh(1)
[T OO cde(1)

ceil ... floor(3M)
certify file SyStEIM CONSISTEIICY ..oveeueerriereeriirieiiirtereeietesee et sr st ens e sre e sretseaesbaas fsck(1M)
certify SDF volume sdfinit(1M)
CHOW et cflow(1)
change bars, create file CONLAININGeiveiivieereiiieeeteeeeeeeeet et e et reeseeeesaeesaeesane diffmk(1)
change data segment space allocation brk(2)
change delta commentary of SCCS deltacoeiviiiiviniiiinienciiicciee s cde(1)
change file Oooeeuiiiiriciiiiccct s chmod(1), chmod(2)
change file OWDET OF BrOUDcocvviiiiiviiiiiiiiiete et bifchown(1)

change file owner or group ...
change group ID of user

chown(1), chown(2)
.. newgrp(1), sh(1)

change login password Cevveeeeen passwd(1)
change default 10gin shell ... chsh(1)
change memory segment access modes . memchmd(2)
change mode of a BIF filec..ccccoceeuenne . bifchmod(1)

change or add value to environment . . putenv(3C)

change or read real-time PriOTibYcoccereeiiiiirierieniinenieeiere ettt rtprio(2)
change or set real-time PriOTIEYoccoccueiiiiiiiiiiicc et e rtprio(1)
change program’s internal ttribULESccceeuiiieiiereiireeiieee ettt et e e eseenee chatr(1)
change root directory for a commandcocueuiieviiiiiiiinei s chroot(1M)
change root directory for duration of commandcccceceevuerercueiinniiniennnininenees chroot(1), chroot(2)

Permuted Index

change SCCS file PATAIMELEScccoiriivieiiiiiiiiniit ettt eee e admin(1)
change size of previously-allocated block of memory ... malloc(3C)
ChANEe SYSEEIM STALE .vervirverteiiiietiiitirte et tet e ettt ettt b et e see st e e mees et et e e eses s eseeteeseaa e s esennnnne init(1M)
change t0 ANOtHEr USET ...cccciiiiiiiiiiiiciierci e a e su(1)
change to different operating SyStem Or VEISIONccccereeveriirenuerieiinienenieieeseieteseesesree e snenenns chsys(1M)
change working directory cd(1), sh(1), chdir(2)

character classificationcc.cceeeveeenene
character conversion, lower-case to upper-case
character conversion, nON-ASCII t0 ASCIIccciiiiiieieiieieeereesieeee e eeeere e eereeeerreeesesesrsareenanens
character conversion, upper-case to lower-case
CRATACEET COUND 1vviiiiiieiiiie ettt ettt s b e b e sae bbb e be b st e sbeebe bbbt sneesaeens
character, description of special characters in terminal interfaceccooeiiieiiiiiiiniinn, tty(4)
character, push back into input streamccccecvvininenienne ungetc(3S)

character, read from buffered open file gete(3S)
character, search for in string string(3C)
character sets, NLScc.cceueee. ascii(7), kana8(7), roman8(7)
character size, settings for terminalcoceveiriieiiiinee e e tty(4)
character special file, createcccoceveivienciineceineienns mknod(2), mknod(1M)
character, write on buffered open file or standard outputccccccoeeciiiiininiinininiin e pute(3S)
characters, count number contained in filecooveeiiviiiiiiiiiinii e we(1)
characters, process characters from regular expression regexp(7)
characters, translate into other charactersccccocvviiiiiiiniiin tr(1)
CRAET ettt ettt bt a bbb bbbt e b b st ebere b b benne chatr(1)
chdir ..ccovvinennn. ... chdir(2)
check C program ettt a bbbt bbb h bbbttt et e et b n et et b lint(1)
check file for acCeSSIDIIEY ..ovevueruiriiiieiiiicci s access(2)
check file system consistency fsck(1M)
check integrity of OS in SDF boot area(s) osck(1M)
check internal revision numbers of HP-UX files . . revek(1M)
check password and group filescoceceeviniiininineiniecinene pwek(1M)
checklist, list of file systems to be checked by fsck(1M) checklist(5)
CRID ittt e . chown(1)
child process, enable break-point debugging ofcccovvueviiiiiiiciiiininiii ptrace(2)

child process, time execution of times(2)

child process, wait for termination of . sh(1)
ChIMOA ot chmod(1), chmod(2)
CHOWIL ittt bbb chown(1), chown(2)
chroot . chroot(1), chroot(2)
CRIOO0E ettt ettt ettt b et b s chroot(1M)
CHSIL 1ttt ettt b ettt bbb b e st et e b b et e e se e s et et et e b e eh e e e s a e aeeae s chsh(1)
ChSYS veeveiriereeeeirieeerciee chsys(1M)

. nl_ctype(3C)
. uuclean(1M)

classify characters for NLS ...
clean up uucp spool directory

CIEAT ottt R e ae e clear(1)
clear error indicator 0N OPEN fIlecceiiiiriiiiieiei et ferror(3S)
clear i-node by zeroing it out e clri(1M)
clear terminal SCTEEIcocciuiviiriiiiiiieiice ettt e clear(1)
clear x.25 switched virtual CirCultocoeiiiveniiiniiieiiiicc clrsve(1M)
clearerr ... ferror(3S)
CLOCK vttt rteie ettt enne clock(3C)
clock, set/print time and date ... date(1)

ClOSE woveiiiiii e . close(2)

close a file descriptor close(2)
close group file getgrent(3C)
close or flush & SEreAIccciiiiiiiiiiiiiiicc e fclose(3S)

Permuted Index

close password file
close pipe between process and command

getpwent(3C)
popen(3S)

close-on-exec flag, get/set fentl(2)
clri ... clri(1M)
clrsve . clrsve(1M)
CIILD eteutententete et e et et et eb e e st et e b et bt e s et b e e aeehe e et ee e et et h e e bt ke btk e bbbt e bt s b n bt s s eae ettt beat ettt s cmp(1)
code portability between HP-UX implementations, typedefs for model(5)
code segments, specify maximum number of . uconfig(1M)

COL e
collating sequence tables, NLS character set ..
collation, non-ASCII string, used by NLS
colon (:) command
combine object files into program

col(1)
. col_seq_8(5), col _seq—16(5)
. nl_string(3C)
sh(1)

comm .. comm(1)
command, create/close pipe between process and command popen(3S)
command, execute from program system(3S)
command, execute on another SYStEIMLcc.coviiiiiiiiiiiiiiiiii e uux(1)
command, execute uucp commands on local SYStemcccoceeciiiiiiiiniiii e uuxqt(1M)

command, execute with different root directory
command interpreter, standard

chroot(1), chroot(2)
sh(1)

command line options, parse getopt(1)
command, report error information for RO err(1)
command, run at lower or higher priority nice(1), nice(2)
command, run immune to hangups, logouts, and qUItSccccceceveririiiiiniencninecee nohup(1)
Command Set 80 Cartridge Tape Utility teio(1)
command, set environment for env(l)
command SUDSEIEULIONcoiiiiiiiiiii ittt st sh(1)
command summary: per-process accounting records acctems(1M)
command, time the execution of time(1)

commands, execute at specified date(s) and time(s) at(1), cron(1IM)
commands, install in fille SYSTEIMceeiiiriiriiiiiiiiec e e install(1M)
commands, process accounting acctcom(1)
common lines, find after comparing two files comm(1)

common logarithm ... exp(3M)
communication, establish interactive communication with another UNIX/HP-UX system cu(1)
COITIPACE weuveerrereerurerertertesseetersaessaeseeastessesssensessesssesensesssesssaseessanseessessseessanssassessasssesesssensesssesenns compact(1)
compare two directories dircmp(1)
compare two files bdiff(1), cmp(1), diff(1)
COMPATE WO SEIIILES ..vetiuiiteteiiitetieit ettt ettt st ea e eb ettt e bt e it e be st et e beesesseebenbeesennenene string(3C)
compare two versions of SCCS file . scesdiff(1)
compile regexp(7)
compiled term file format term(5)

compiler, Ccceevvereenen .. cc(1)
compiler development yace(1)
compiler, FORTRAN 77 fe(1), £77(1)
compiler, Pascal pe(1)
compiler: terminfo tic(1M)
compiler-compiler .. yacc(1)
complementary error function and error function .. erf(3M)
compress and uncompress files, and cat them compact(1)
compress and uncompress files, and cat them compact(1)
concatenate, copy, and/or print files cat(1)
concatenate lines in one or more files paste(1)
concatenate two strings string(3C)

conditional expressions, evaluate and test .. sh(1), test(1)

Permuted Index

COMIE ettt config(1M)
configure an HP-UX system . .. config(1M)
configure LP spooler system mklp(1M)
connect t0 remote LEIMINAL ..vecveiiivieirrreieii ettt ene dial(3C)
connect-time accounting acctcon(1M)

constants and functions, math math(7)
construct a Bell file system bifmkfs(1)
construct file system on special file ... mkfs(1M)
CoNSErUCt NEW fIle SYSLEIM ...euiiiiiiiriiiii ittt sttt ettt b e eb ettt eaaen newfs(1M)
contents of directory, list

context-free Grammar, CIEATEceciviiiiiiie it reeert ettt ettt ee b b saesbn e es s sbeebaaesaeesnas yace(1)
COMEIIUE 1vvitiiititietiteetett ettt et b e ea b s b s e R e bt ss e bt ebe et rsasns sh(1)
control characters, interpret ASA carriageccoceevevininenininiiiini asa(1)

control devicecoevevreicicnnnne et e st s e e s e s ioctl(2), stty(2)
control-flow constructs, shell programming 1anguagecccoceevineeiiieiiiiiniecne e sh(1)
conventional terminal namescccooevveveiiiirenennnn . term(7)

convert archives to new format arev(l)
convert between 3-byte integers and long integers ... 13tol(3C)
convert between long and base-64 ASCIIcccceuiiiinriniiieienieieictreet ettt a641(3C)
convert binary wtmp records into ASCITcooiviiiiniiiiiiiiincic fwtmp(1M)
convert date and time to ASCII ctime(3C)
convert floating point value t0 ASCIT SEIING ...cvvereermiiiiiiiiiiicin s ecvt(3C)
convert, reblock, translate, and copy a (tape) filec.coceivveiiiiiniiiiiiii s dd(1)
convert string to double-precision integer strtod(3C)
convert String t0 IMEEErccooviiiiiiiiiii s strtol(3C)
€onVert taAPE flE ..ooiiiiiiiiiiiiiici e e dd(1)
convert termcap description to terminfo description ... captoinfo(1M)
copy an open file deseriptorcccoviviiiiiiiiiiiiinnns .. dup(2), fentl(2)
copy, concatenate, and/or Print flESc..c.coveverirreriniiieinieiieene e s cat(1)
copy files between two systems uucp(1), uuto(1)
copy files out to media ...occoevreeinriniennennnne. .. cpio(1)
copy files while simultaneously editing them sed(1)

copy line from standard input to standard outputcccecevviiiniiiiiinii line(1)
COPY, LiNK, OF TNOVE fIlES 1iiieeiiiiiieiiiiiciie e eiee ettt eee st e e e e e et e e e eenaabe s s saaeeessbaaeessbaeesseeanssesensataesennes

copy operating system from one or more SDF boot areas to another -

COPY SEIIIE ceviniiititi ittt ettt sae e sttt st e b e e te e s b e et e sbeess et e bt e te e bes s s s eba s eanas string(3C)
COPY LAPE FILE ettt ettt bbb e oo s sr e saae e dd(1)
copy to or from BIF files . . bifep(1)
copy to or from LIF files lifep(1)
core image, examine and/or modify for child Processccocovvviiiiiniiiiiiinniiiine e ptrace(2)
core image file, deSCTIPION OFiiieeiiiiiiiiiieieierte et be ettt e e bastaetsestasses e besneesbesreenee core(5)
COS vemeevereerennenrereeneeiene .. trig(3M)
cosh sinh(3M)
cosine function trig(3M)
cosine, hyperbolic sinh(3M)
CP s . c.p(l)
cpio

cpio archive format, deSCription Ofcceiiierriirierii it

cpio archives, unpack/extract from 5.25” flexible discs .

cpio archives, unpack/extract from Command Set 80 cartridge tapeccoovvevviiviinniieniiinenn, upm(1)
CPD +evteveererrteseeseesteteaseete s et ertes e b easetaeas et esbebeebeatebe e e eteseereetaasteb e tanseaseehen b e b enaess et s rabe s eran s e e et e eaeneebenes cpp(1)
cpset ... cpset(1M)
CPU type et e machid(1)
creat .oeeieiirinnn, creat(2)

create a directory mkdir(1)

Permuted Index

create @ direCtory fIlec.ccociiiiiiiiiiieec ettt se e mkdir(2)
create a name for a temporary file ..o tmpnam(3S)
CTEAEE & TIEW PIOCESS ...oouveveceiesetetestessiiiteseae st ese s et s e ane s st e e ea e et s s e s e b e be e s e st e s s s s be s e abs e bssneseesssansnas fork(2)
create a special file entry mknod(5)
create an interprocess channel : pipe(2)
create and open tempPOrary fllecccceciviieririiininiiee et tmpfile(3S)
create cat files for the manual catman(1M)
create delta (change) for SCUS filecouvirireeerererirentriireeesieesieesee ettt sees s s eseeseaeseseesssessesassenens delta(1)
CTEALE AEVICE fIlESeevieiirtieiiititenteti et ettt ettt ettt e ettt s et et eae s sae et et b st enen mkdev(1M)

create directory, block/character special, fifo, or ordinary file .
create encryption key ...

. mknod(2), mknod (1M)
. makekey(1M)

create libraries, archivescccoiiveeiniiiiniee e ar(1)
€reate lINK £0 flE c.veveiririeieieieicee ettt st nn link(1M), link(2)
create message catalog file for MOdIfiCAtioNcecvevvevueeiiiiierceriientee ettt findmsg(1)
create mnttab table setmnt(1M)
create new file, overwrite existing fileoccoeeiriiiininiiinie e creat(2)
create new operating system from ordinary filescc.occcecviniiiiniininein e oscp(1M)
create or change parameters of SCCS files admin(1)
create Unique file NAIMEocoeiiiiiiiiiiiiice ettt mktemp(3C)
creation mask, get/set fOr fllecccovvirierinieieeirieee et sh(1), umask(1), umask(2)
CTOIL ettutuieteetenteuteatesess et e beeues et e b e ae et st es et e st be st ese s es b emt e s e eb et es e e st st ee e e b et enbesbeneeatebeese s et enbeneebeneeneen cron(1M)
crontab ... crontab(1)
CRT, facilitate viewing of continous text Onc.ccccoceeiiiiiiiiiiiiiiiiiecb s more(1)
CRT, information about graphics devices with . graphics(4)
CRT screen handling and optimization routines . curses(3X)
CIYPL ceverieieieeienerte et et ettt sae e nns crypt(3C)
C-source error messages iNt0 & fleccviveuieriririecrenieer et mkstr(1)
... ct(4)
ctermid(3S)

ctime(3C)

.. cu(1)
current directory, print name of .. pwd(1)

current events, print mnews(1)
current user idcoeeeene ... whoami(1)
current user in utmp file, fINA ...coooovireiiiii e ttyslot(3C)
current working directory, change cd(1), sh(1), chdir(2)
current working directory pathnamec.cccccoceeiveereenieniereniieneeeesseeeesieeseeseeeeesaeseessseseenenns getewd(3C)
current working directory, print NAmME Ofccceevirveeiieriiiiierieieseesteeeesreee e eee st s eeste st aeree st esaesaeenne pwd(1)
curses curses(3X)

cursor handling and optimization routines ... curses(3X)
CUSEIIA teviveitetiitiieit ettt et ettt e et et ete s b e st b et e s e s e b e eae e s e s sasabeneeeatesheeneeeneen et ennee e entennen cuserid(3S)
CUE ettt et b bbbttt et a e st b e bbb e e s et e nenee cut(1)
cut out selected fields of each line of a file cut(1)
daily ACCOUNMTING ...veuirviriiiiiiieiitit ettt ettt sttt et sbe sttt es e b be st e s e sesenaneneas runacct(1M)
data access, long integer, machine independentccc.oeeevieiereesienieerienieese e sputl(3X)
data base, relational data Dase OPETAtOTcccccuieeeiiiiiiieeieciie et eee et eeeere e e e eeeae e s baeeesteesnasseeennns join(1)
Data Encryption Standard crypt(3C)
data segment, change space allocation fOrccccoieieririeieniciinienteeneeert et brk(2)
data segments, specify maximum number of uconfig(1M)
data types, include file defining data types for system code . .. types(7)
database ACCESS ..veviiiirreriereiie ettt te e ettt s query(1)
datacomm, accept/reject files received through uucp or UULOeoveeieeieiiiiiiiieiiieeee e uuto(1)
datacomm, copy files between tWo SYSEEIMScccerereeruereenieniieiere et st eaeene uucp(1), uuto(1)
datacomm, execute command on another system . uux(1)
datacomm, list of KNOWD SYStEIM NAINESeceerverririieieriieneeieeree et e s ebesee et steesae st e eeesseeseemeensesnaes uucp(1)

Permuted Index

datacomm, log of uucp and UUX tTANSACHIONScoeervirerueerenreiciirieiceeret et vebese e seeesnes uuep(1)
date ... date(1)
date and time, convert to ASCII string ctime(3C)
date and time, Get MOTe PrECISELYvrerecrrereireeriierereieiririreerireetteseeseres b reseeseresaaeseteneseenaeseanes ftime(2)
date, get/set .o.oeereiieinciiiinns gettimeofday(2)
ALE, SBE 1overiririirititiici b e e bbbt ens stime(2)
date, set and/or printccoceeervevenene ... date(1)
dates, reminder service for important . calendar(1)
daylight ceo.eoveverriieieieeeeece e .. ctime(3C)
daylight saving time, time corrected for ctime(3C)
QA ereeveeoooeeeesssssssesss s dd(1)
deallocate a block of memory . . malloc(3C)
debug damaged file SYSEEIcvvviviiiiiiiiiiii s fsdb(1M)
AEDUGEET ...vviirireiiiti et ettt adb(1)
debugging, enable break-point debugging for child process . ptrace(2)
decompiler: terminfocccoviiiiiiiiiii untic(IM)
delays, settings and controls for terminal GUEDUL ...ooceeveeiiereeiiiiererieeeren ettt ettt e e eeenes tty(4)
delta .)
delta, add t0 SCCS fIle ...oviviiiiiiiiiiiiii ettt s e ar e delta(1)
delta, change commentary of SCCS ..o cde(1)
delta, inform user of any deltas being created for specific SCCS filecccovvivivniiiiniiiiniicciiinn sact(1)
delta, remove from SCCS filec.oceveeirinicrincreieneneeeeee . rmdel(1)
demand loadable, set for program . .. chatr(1)
deroff ..ooeieciiiiie, ... deroff(1)
DES password encryption crypt(3C)
description of environment environ(7)
description of /etc/passwd, pwd.h files ... passwd(5)
description Of GrOUP flEe.eiiiiiiriiiiieieie ettt ettt group(5)

description of magic.h and magic numbers magic(5)
description of OS management COMIMANASc.cvverveerrerreerenrreiereniiseerseeeesseseeseeseeessaeseessessenses osmgr(1M)
desCriptor, ClOSE fIlec.ccviiiiiiiiiiiiiiic et close(2)
descriptor, copy/duplicate flle ... dup(2), fentl(2)
descriptor, get Valtie Of fIlecccoveiririioiiiieeieeee e ferror(3S)
device, description of hpib INtErface t0oecviriiiiiierieiieierent e hpib(4)
device driver, select virtual device driverccccccniviiiiiiniiniiiiii uconfig(1M)
device drivers, List ..o Isdev(1)
device file, create block/character . mknod(2), mknod(1M)
deVice fIleS, CTEALEviviiiiiiiiiiiiii ettt et ettt s a s mkdev(1M)
device files, perform functions onc....c.ceeeee. . ioctl(2), stty(2)
device names, pack/unpack for MKNOA(2) ...ocvveeeereriirriririereerieeeneeetriee e mknod(5)
device I/0 LIbrarycceeveeevvervveriveiveeaans gpio—*(3I), hpib_*(3I), io—*(3I)
devices, Dacking StOrec.ceciiiiiiiiiiiiiic s vson(2)
devices, information about those with graphics crt’s . graphics(4)
EVIIM .ottt ... devnm(1M)

Af e df(1M)
diagnostics, add 0 DIOBTAIN ...ccceciivieeriiiieesiesiieeesteseessesssesasssessesseessessessasseesassessassnsessessesssessesnes assert(3X)
IAL ettt ettt ettt e s be ke b eseent e st eke e he b et enbea b et et e bbb esaeneat dial(3C)
dial out t0 a remote termMINAlcocciiiiriiriiiiiiieeeie ettt e dial(3C)
dialup SECUTItY COMEIOL ..oiviiuieiiiiiiiciiititecitett ettt ettt eneas s dialups(5)
diff diff(1)
differences between flles, MATKcvcerviieeririeriireieiestesees e eessee et ssese s sesesesseaesestsnesessenesessensen diffmk(1)
differential file cOMPAriSOn, 3-WAaYcc.ooiiiiiiiiiiiiiii s diff3(1)
G ..o seeeee e ee e esessesseesseeeese e esesesesseseeses e diff(1)
QIR e diffmk(1)
digitizer, description of hpib INEEITACE 0 .eecirerrieriiriirriieiirieee ettt hpib(4)

Permuted Index

QATCINID ©vveueetiteieeete ettt et et et et e ste b eteeaestese s e b essesesseaseseeb et e beebe et ansessenaese st e s teseese st ensesessesnebanaessene diremp(1)
directory, change root for duration of command chroot(1), chroot(2)

directory, change workingcccccecviiviiicncncnnne. .. ¢d(1), sh(1), chdir(2)
directory clean-up for uucp Spool dir€CtOrycceeciireerieniiiiniiiiiiniesienieere e uuclean(1M)
directory, COMPATE EWOccceeriviiiriiiiiiieiiiiieas ettt ettt et esbesrn e an e a e raeeesbeen diremp(1)
dIreCtOTY, CIEALEoveviiviriieriietieite ettt mkdir(1), mknod(2)
directory, description of internal SDF format of . dir(5
directory, extract from path DAMEccccceiiieriiiriiiieeiie et basename(1

directory, list contents ofccccooviiiiiiiiiiii Is(1

directory, list contents of LIF .

)
)
)
lifls(1)
)
)
)

directory, movecceeenne . mvdir(1IM
directory, print name of current WOrkingcccecveeiiimeeiiiniiiniiniiiniici s pwd(1
directory, removeccceceeveeveniinunenns rm(1
QITECEOTY, TEIMIOVE ..eocviiieuiiriiiiiiiiiiiteetet ettt ettt ettt et st st ss e e st e s b e s b b a s et teatestesbesnnenneons rmdlr(2)
dirnameocccoveecveviienienicnienenans basename(1)
disc blocks, TepOrt NUMDET Of fTEE ...ccveeviiviiieeeiiriitietict et ete et ettt eae e eab et e b e eteeveeaeesaensaseesnennne df(1M)
diSC AESCTIPEION Bl ..veveeuiiviierieieiieste ettt ettt ese et b et e et b e ae et ebeeaeesesessesesbestenbensetassasneseene disktab(5)
disc drivers, information about blocked/unblocked interface . disc(4)
disC IMItIAIZATION .oveviiiiieiiiiiiiiciit e mediainit(1)
disc storage, Preallocateocccieiieiiiiieei et prealloc(1)
disc usage accounting by user ID . dlskusg(lM)
disc usage, SUMMATIZEceevrirviiniiiiiiieriiee e e du(1)
disc, write current contents of MEMOTY t0 ...c.eveerveriveirirrereriereirerene ettt srenene sync(2), sync(1)
AISKUSE +ovvevveveiiiicieieeeenccce e .. diskusg(1M)
display buffering, specify number of pages of ... uconfig(1M)
documentation, on-linecccceevcrerrenennns ... man(1)
documents, print using mm macros .. mm(1)
dot (+) COMMAN oviriiriiiiiiiiiiicii bbb et aer s b e sh(1)
drand48 drand48(3C)
driver, information about blocked/unblocked disc interfacecccoevvveviiiiiiiiniiiniiiiicnieeceens disc(4)
drivers, list deVICEcoiiiiiiiiieiiii et Isdev(1)
... du(1)
dump, octal or hexadecimalcccoociiiiiiiiiiiiiiiiii od(1)
QUINIPINISE wovviiutieitiiteeiteett ettt ettt et eb ettt et e s bt st b b e eb s e ae e st e et es s et e e abe e s besbeenbeebesaneneenesbsenneenees dumpmsg(1)
QUD ettt ettt ettt b e e et s b e et e e ke et et b e s e e nbesheeae e stk e be b e e bt ebeebe et e et e nate dup(2)

dup2 dup2(2)
duplicate an open file descriptor . dup(2), fentl(2)
duplicate 0pen file AESCIIPLOLeevvieeiiiiitiertieie e et etee et e et e e e eaeesbe st e stesssesbaessbaessaessessnnes dup2(2)
e ... e ex(1)
€CRO oot echo(1)
echo (print) arguments after shell iINtErPretationc..c.cveeceririirireririeiriee e echo(1)
LT OO OO OO ORI ecvt(3C)

)

)
editing activity, print for SCCS file . .. sact(1)
€dILOr, SETEAIN TEXE .viviiiiiiiiiiiiici ettt et e e eae s sed(1)
€AIEOT, BEXE 1ovitriitiietiieiic et ed(1), ex(1)
€dILOT, VISUAL EEXE wuveviuiiriiiiiiiici i et vi(l)
effective current user idcceceevviniinnne .. whoami(1)
effective user/group ID’s, get fOr PrOCESSceviiiiiiiriiiiieiiieiieeetcie et saeaenes getuid(2)
BETED eveeuieuieteeuteteeseeuest et et eb et eaeebe st s teat bt e sttt ha e st ae b e st e st e st at st et ee e ... grep(1)
EMS ettt st eaes .. ems(2)
EMS, description ofcccccccvvenenen. .. ems(2)
emulation of asynchronous terminal ..o aterm(1)

Permuted Index

enable swapping and paging swapon(1M)
encrypt passwords crypt(3C)
encryption key, generate makekey (1M)
end end(3C)
endgrent getgrent(3C)
endpwent getpwent(3C)
env env(l)
environment, description of parameters and usage sh(1), environ(7)

environment, install parameters in sh(1)
environment, print currentcooeveceninniinnnns env(l)

environment, set for duration of one command env(1)
environment, set up at login time profile(5)
environment variable, get value of getenv(3C)

EOF (end-of-file) character, deSCription ofccciiuorcurinieencecueininiceceacece et easaaenes tty(4)
EOF, indicate receipt of when reading file ferror(3S)

EOL (end-of-line) character, description of tty(4)
eqn, tbl, nroff, troff constructs, remove from text deroff(1)
erase character, description of e tty(4)
erf . erf(3M)
erfc erf(3M)

err(1)
errfile errfile(5)
errinfo errinfo(2)
errinfo, report value for last command failure v err(1)
EITIIO .eeuvtinrentenesiesestenseuteease st esse s et et seebensenens errno(2)
errno, report value for last command failure err(1)
ERROR regexp(7)
error function and complementary error function erf(3M)
error handling, mathematical matherr(3M)
error indicatorcoceeeveuenene errinfo(2)
error indicator for system calls errno(2)

error indicator, TeSet SEALUS OF ...c.cciiiiiiriiiiieieieiet ettt ferror(3S)
error indicator while reading file ferror(3S)

error information on last command failure err(1)
error logging file for systemcccoeeueneenee. .. errfile(5)
error message generator from C programs perror(3C)
€LEXE eviiiiiii e ... end(3C)
eval sh(1)
expr(1)

weex(1)

.......... more(1)

exec sh(1), exec(2)
execl exec(2)
execle exec(2)
execlp ... exec(2)
executable file, extract symbol table (name list) entries from . nlist(3C)
executable file, get size Ofccooociiviniiiiiniiie ... size(1)
executable linker/assembler output file, description of a.out(5)
execute a file in current process exec(2)
execute command at lower or higher priority nice(1), nice(2)
execute command immune to hangups, logouts, and quits nohup(1)
execute command on another systemccceceeveniiinnenne. ... uux(1)
execute command using different root directoryccocceiiiiiiiiiiiiin chroot(1)

execute commands at specified date(s) and time(s)
execute commands from file

. at(1), cron(1M)
sh(1)

- 11 -

Permuted Index

execute New program in existing ProCesSc.cceiiiimriiviiiiniciiiiicce s sh(1), exec(2)
execute process with real-time prioritycccocoveeiiiiiiiiniiiiiiiii rtprio(1)
execute HALGOL programs opx25(1M)
execute uucp commands on 1ocal SYSEEmMcceeiiiiiiiiiiiiiiiiiiee s uuxqt(1M)

. uucico(1M), uux(1)
profil(2), monitor(3C)

execute work requests on remote system
execution profile, create for program

execution, suspend process execution for time intervalc....cocevveevieeviinininicneneniennes sleep(1), sleep(3C)

EXECV toviitinititestesseee et e bttt b bt b e b e e R et e b et eaeeae st ... exec(2)

execve exec(2)

LS5 « OOOOO OO OO PO POOTURRRO exec(2)

XA ettt bbb RS bbb s nan exit(2)

exit sh(1), exit(2)

.. sh(1)

exp(3M)

.. expand(1)

expand tabs to spaces, and VICE VEISAcccceiviirieriiiiiiiniiiieieneeeseeeie e et s eae s sae e s expand(1)

eXPONENt, TAISE 2 £0 & POWET .ecveierieririererieriariesiesetereetesseseesesessessessessssesesseseesesessssessasssesesssesessens frexp(3C)

exponential function exp(3M)

export ... sh(1)

eXPr expr(1)

EXPIESEIVE .evvervenrereeseressesresensessesseseesessesessesseseeasasensensens .. ex(1)

expression, evaluate arguments ascooeeerveieeniiinnnn expr(1)

EXTECOVET evuveeveruereruensesesesennsesneeeneas ... ex(1)
Extended Memory System deSCIIPLIONoecceeriieveiiiirreeiiierteeniie et e s e s e sanee e saees
external symbols, examine execution profile forcc.cocveviiierienieicniinin e

extract entries from symbol table (name list) of executable file . .

extract error messages from C source into a filecccvveviiiiiiiiiiiniiini mkstr(1)

extract files from 5.25” fleXible dISCS ...eviririireeiriirieiiiet e upm(1)

extract files from Command Set 80 cartridge tape archives upm(1)

extract files from mediacccviieiineiniieeeec ... cpio(1)

extract portions of path names basename(1)

.......... fe(1)

. see fe(1)

floor(3M)

.. true(1)

.. fe(1)

fclose(3S)

fentl fentl(2)

fentl(2), description of requests and arguments fOrccoeviirvereniinienenninee e fentl(7)

fentl.h, description ofccceiviiiiiiiiiniiiiien ... fentl(7)

................ ecvt(3C)

.. fopen(3S)

ferror(3S)

ferror(3S)

... fclose(3S)

........... getc(3S)

........... gets(3S)

...................... grep(1)

fifo Special file, CTEALE ...cvivveereieririireieriitieteeeett e et ere st esesae s e ebeeae e e e esesbesesresaabens mknod(2), mknod(1M)

file, assign another file name to already open fileccceeveriiimeriiniiniceniiniinienc s fopen(3S)

file, assign buffering to open setbuf(3S)

file attributes file, description of fs(5)

file, buffered read frOMcceiiiiiririieiieie e fread(3S)

file, Duffered WIIte £ .cccoveeiveeriiiiiniiiiricci e s fread(3S)

file, change group ID ofccooeeiiiiiiiniiiiiiiinnns e ... chown(1), chown(2)

-12-

Permuted Index

file, change MOde Ofc.ceviviiiiiiiiiiieie ettt et chmod(1), chmod(2)
file, ChANEE OWNEL ..cvovivieiiiiieiiiic e chown(1), chown(2)
file, change PErmiSSION DIES ..c.ceevveiieeiiesiiriersieniietesteeesneeeseeeesaeesaeesaessereeseessesseessaesnes chmod(1), chmod(2)
file, check revision NUMDET fOIcc.oiiriiiriiiiiriciieccr ettt revek(1M)

file, close a buffered open file fclose(3S)

file comparison, three-way differentialcccooevievriiiniiniiiiiieeee e diff3(1)
file CONLIOL Lveveeeeiiiieiiiierc e .. fentl(2)
file control constants, file containing definitions of .. . fentl(7)
file, copy LI in OF OUb wecveeceevvenieesiiniireenesieseeiene ... lifep(1)
file, copy to tape while performing certain CONVErSIONScceceriireererierieincnenteieeeeseeeresesresaenenee dd(1)
file, count words, lines, and characters contained thereinccecceeierrieveesiiereeenreerieeereesieeseesseeeenns we(l)
file, create and open temporary ... tmpfile(3S)
file, create deviCe/SPELIALc.coeeeeruiirieiiieieieiiete ettt et se ettt mkdev(1M)
file, create or OVErWIite OXAINATYccceiiiiirieiirierieieieri ettt sttt et ettt be bbb creat(2)
file, create or remove link to/from . link(1M), link(2), unlink(2)

file, Create OFAINATYccccoiveriiiirieecinrecetet ettt ettt e bttt be e ere e ebesaenen mknod(2)
file creation mask, setc.ccceerrerererrenennene . sh(1), umask(1), umask(2)
file, description of buffered I/Occooiiiiiciiiiieiniiiirr ettt stdio(3S)

file, description of password file, /etc/passwd .. passwd(5)
file, description of SCCS file format scesfile(5)
file descriptor, assign StrEAM L0c.cciiieevieeieiieeieeieireeeeeee st eereesresseeseeeseeseeseesseenseereennens .. fopen(3S)
file dESCIIPLOL, CLOSEcveiuiiiitieuiiiieteie ettt sttt ettt et s b et e b st st b s e e et ene s close(2)
file descriptor, copy/duplicate dup(2), fentl(2)

file descriptor, create file POINEET USINE ..c.ccvrvereriereriririinirieeeeirte ettt s en e enees fopen(3S)
file descriptor, determine if associated with terminalcc.cccccooeeeiniencncinniniiiiceienceeee ttyname(3C)
file-descriptor, get value of .. ferror(3S)
file, determine accessibility Ofccccciiiiiiiiiiiiiiiic e access(2)
file, error logging file fOr SYSLEIMcccceruiriiiiiciirierteiet ettt ettt ettt st eaes e s n et errfile(5)
file, find and/or remove duplicate lines in . uniq(1)

.. spell(1)
...... acct(5)
. tmpnam(3S)
. stat(2)

file, find spelling errors in
file format, per-process accounting ..
file, generate name for temporary ..
file, get information about ..

file, get/set status flags forccecvvvrrerirrerenene. .. fentl(2)
file, indicate the occurrence of an error while r€adingc.coeeeveeueerireinieenieereceerceereesieeenees ferror(3S)
file, indicate when EOF is encountered when reading fromc.coccceeieiieirniiieneeneinncenicinnenens ferror(3S)
file, locate in file system ... find(1)
file, MOVeE £0 NEW POSIEION TN .ouiiiiiiiiiiiiiiitiiiii ettt ettt ettt enes Iseek(2)
file name, create file name vs. i-n0de LISt ..c.covvveveeiiiiiiiiieieiiice e ncheck(1M)
file name, create uniquec..c.ccccoceeuenne. mktemp(3C)
file name, extract from path namecoceeverevenee . basename(1)
file name, find special file for mounted file system on which file lies . devnm(1M)
file name, generate for temporary filecccceccereereriiniinienriesenieiene tmpnam(3S)
file name, generate for terminal ctermid(3S)
file, open for reading OF WITEING ...c.coeveeeeiiirieeririeceeniectre ettt aes et ene s open(2)
file, open with assigned buffering . .. fopen(3S)
file owner or group, change bifchown(1)
file pointer, create using file descriptor . .. fopen(3S)
file pointer, move read/Write (SEEK)ccciiiieereriiiiirieticieeci ettt e Iseek(2)
file pointer, obtain for fIlecciieeiiririeiicie et et fopen(3S)
file pointer, re-assign to another file .. fopen(3S)
file, Print 1ast PArt ofcceeiiiiieiiii e tail(1)
file, put line length specifications in text flescccevirirrerieiineiieireeere e fspec(5)
file, put margin specifications in text files fspec(5)
file, put tab specifications in text files - . .. fspec(5)

~13-

Permuted Index

file, read and execute cOMMANAS fTOMcevviuiieeeuiriiiiieiiic et es e nene sh(1)
file, read and format data from scanf(3S)
file, read character from gete(3S)
file, read from read(2)

file, read string from . . gets(3S)
file, read word from gete(3S)
fI1€, TEIMOVE ...eiieiiiiiiitcit ettt ettt ettt et e bbb e s st b et e st e e e aeae st e s beneebeshetentenaaenene rm(1)
file, remove a LIFccccocvviniiniicceiiniieene . lifrm(1)

file, remove extra new-line characters from rmnl(1)
file, remove selected fields from each line in cut(1)
file, remove selected table column entries from cut(1)
file, rename LIFcccooiiirmiiiiieiciieiectet ettt ettt et s e e se st a e lifrename(1)
file, rewind before next I/O OPETALIONcoeeeriririrreuiiiiiieiiiiieeetrenee ettt eaeeeseseesess e sesnes fseek(3S)
file scanmner, bigcoccoeveerererereerirerererneenenns ... bfs(1)
file, search contents of for specified string(s) grep(1)
file, set/clear set-user-ID, set-group-ID, sticky Ditscccocreeeeeururmrerercereercrceemrereaeeeiennens chmod(1), chmod(2)
file size limit, GEt fOI PIOCESS ..euceveveririrreiririesietetie ettt ete st e te s es e e eeese st teseresssae s seseeeseseenenaenes ulimit(2)
file, sort contents of sort(1)
file, SPLIt INEO DIECES weuveereeiirierterierierteeecterte et e saeete e seesaessesseeaseessesseessessestaessessenseseessassessensasasessnnns split(1)
file system, backup file system on cpio archive backup(1M)
file system (Bell) consistency check and interactive TePaIrocecvceererruereririerrreneeeeeeseneeneenene biffsck(1)
file system (Bell) debuggerccccoevevieieineneenieinene . biffsdb(1)
file system consistency check and interactive repair ... fsck(1M)
file system, construct on special fileccccerrurunnene. . mkfs(1M)
file system debuggercceeueee .. fsdb(1M)
file system descriptor file entryccoc......... getfsent(3X)
file system, find special file associated with . devnm(1M)
file system hIErarchy ...t hier(7)
file system, install COMMANAS I ...oueviriiiiirieiiiririieeree ettt eees install(1M)
file system, list of those to be checked by fsck(1M) checklist(5)
file system, mouUNt Or UNIMOUNE ...ocvvveuiiiiiiiieieirecenieiet e mount(1M), mount(2), umount(2)
file system name, get fOr MOUNEEAcceiveereriirereiiesieeteieee et e e e et esaeeeesaesteeseesesseessesseesseenseas ustat(2)
file system pack name, get for mounted ustat(2)
file system shutdown statusccceccuene . fsclean(1M)
file system, table of mounted file systems . mnttab(5)
file, system’s “bit bucket” SPECIAl Ilccevierieeiruirierieieiieietiete ettt sttt ettt aens null(4)
file transfer: XMODEM protocol umodem(1M)
file transfers: KERMIT-protocol kermit(1M)
fI1€ BrE@ WALK ...viiviiiiiiciitictc ettt h et ettt et b e ne e ftw(3C)
file, update access/modification/change times of . . touch(1), utime(2)
file utilities, Bell Interchange Format ettt et s et s st sre b e e saa e bif(5)
file, Write ChAraCter OMEO ...coceeviciiiiireieiererte ettt e et e st e eebaeaa s e ae e eneeneens pute(3S)
file, write formatted data onto . . printf(3S)
file, write LIF volume header omcccooiiviiiiiiiiiiiiiciiiii e lifinit (1)
file, Write StTING ONEO ..viviviiiiiiriiiiiiiiec ettt ettt sttt ettt ae st puts(3S)
file, write to write(2)
file, write word onto pute(3S)
file-creation mode mask, Get/SEtccciviriririririeicieiceeere e umask(1), umask(2)
BIIEIIO oottt a ettt n e bt n e e st e e st seeneeas ferror(3S)
files, ArChiVe O TAPEccviiiireeiciiiiiii ettt et a ettt nene e tar(1)
files, check password and group fIleSccoceceirueeiirierierieirieee et s e sa e ebeenean pwek(1M)
files, compare tWocccceeveerrercerseerernnne bdiff(1), cmp(1), diff(1)
files, compare two and create Change DATSccccovviveriiiiiiriireee ettt diffmk(1)
files, compare two and find lines common to both comm(1)
files, compare two and find lines UNIQUE t0 @ACKc.ivveieviiirieciiiee ettt comm(1)

-14 -

Permuted Index

files, concatenate tWo OF INOTEc.ccviiruieiiiiiteieiiiieeee ettt ess e eae st saesn e sa s e cat(1)
files, COPY cvvvvvevrerreenirsreesrenieeienne
files, copy and simultaneously edit ...
files, copy between two systems

uuep(1), uuto(1)

files, COPY OUL £0 MEAIA ..veveeieireiriirtirteieitee ettt see ettt s b e sae et et e st s essa e b ae st sbeseenaesessne cpio(1)
files, description of /etc/profile and $HOME/.profilec.cccoviiiiiiiiiiiniinniiciiincnecn profile(5)
files, extract from mediaccooiiiiiiiiiiiiiiii e cpio(1)
files, format and print .. pr(1)
files, merge liNes N ONE OF IMOTE ..c..ecviiiiiiiiiiiiiiieeee ettt sab et sa s e ee e paste(1)
files, MOVE, LINK, OF COPY -veeverrerrrrriirieerierteetastisesseessessesstessessesseessesesssasssesseessessessenssensenseesesmeesesseenes cp(1)
files, PIINt .veeveierieeeriirieeeee et .. cat(1)
files, unpack/extract from 5.25” flexible discscccoeveues e . upm(1)
files, unpack/extract from Command Set 80 cartridge tape archives upm(1)
filter reverse line-feeds and backspacescccccovviiiniiininnnns ... col(1)
AN e ... find(1)
find current user slot in utmp file .. . ttyslot(3C)
find duplicate lines in file uniq(1)
find files .ooeriiiiiiiiiiiin ... find(1)
find files in a BIF system . . biffind(1)
find name of a terminalcccccoevreiiiens .. ttyname(3C)
find strings for inclusion in message catalog findstr(1)
ANAIMISE cvveniieiciic e s a e s findmsg(1)
ANASET 1ovviiiicc e findstr(1)
fix manual pages for faster viewing with man(1) fixman(1)
FIXINAIL ©evetitiictce e e e e b bbb fisman(1)
flag, GE1/SEt CLOSE-OM-EXECvuviririiirteerietetereieirtseeeeb sttt stbe sttt ettt sebes e baes st ssseaeresens fentl(2)

flags, mapping pwb/V6 UNIX terminal flags into current HP-UX ... tty(4)

flags, set shell ..o ... sh(1)
flexible discs, unpack/extract files fromccoceeeviriencnicneiicnens ... upm(1)
floating point number, split into integer and fractional parts .. . frexp(3C)
floating point to ASCIL CONVEISION ...ccvivieuiiuiiiiiiniiieiieei it ecvt(3C)
floor ...ooveeiiiiiii ... floor(3M)
flow graph, C, ZENETALE ..ccuuiviereiiiierieeititieeiteteeee et tete et saee et e seeeseeseetesteebsenseerbaesaesaesesensassans cflow(1)

flush buffers associated with an open file
MO woiieieeceeec e

. fclose(38)
floor(3M)

fold long lines for finite-width OUtPUL AEVICE ..vivieeieriiiiiiciiiciceieeite ettt fold(1)
OPLIL vt fopen(3S)
for 100D, exit from eNClOSINGcceiriiriiiiirieiiet ettt sttt sh(1)
for loop, resume the next iteration of ... sh(1)
fork

format and Print fIlescccoviiiiiiiiieee e pr(1)
fOrmAt C PIOZTAII ..eeviiieriieteesieiiiesiteseete et esteeae e et e bes st easestesaeetesseessasaensesstenseesseseseetensennesssaensensenses cb(1)
format, compiled term file ... term(5)
format data Inbo SEEINEcveeeeeruiirierericince e ... printf(3S)
format data on buffered open filecoceeevinirieniiicnicie e ... printf(3S)
format data on standard output printf(3S)
format, nlist structurecccccevueenen nlist(5)
format of an i-node, description of inode(5)
format of a.out file, description of a.out(d)

format of core image file, description Ofccccccooieeiiiiiniiiiiii e core(5)

format of cpio archive, description of cpio(5)
format of library/archive file, description Ofccooiviiiiiiiniiiiiiiiii e ar(5)
format of SCCS file, description of scesfile(5)
format, Privileged VAIUESccoeiiiriieiiiee ettt e s privgrp(5)
format SDF VOIUINEc.coviiiiiiiiiiiniiiiicii ettt s sdfinit(1M)

-15-

Permuted Index

format specifications, put in teXt fle ...cccceviriiriiireeiei e fspec(5)
format tables for nroff or troff
FOTINAL LEXE .oevvieeeieiceet et s nroff(1)
formatted output from varargs argument LStcocoouiiiiiiiiiiiiiniii e vprintf(3S)
formatted output with numbered arguments . . printmsg(3C)
formatter, text, SIMPIE ...c.oviiiiiriiririrei et adjust(1)
formatting text with the mMan MACTOSccoceiiiieiiiiiiiiiiiiicc e man(7)
formatting text with the M MACTOS ...cc.evveeviiriiiriiiiirieitee ettt sttt e e et s mm(7)
FORTRAN 77 COMPIIET .verveeuriiieirenieeeiaeieeiieneeetiecteiieieeees et eseeasesaesesseeseensesnsasseensens . fe(1), f77(1)
EDTINEE Lottt et e .. printf(3S)
fpute pute(3S)
fputs puts(3S)
fread fread(3S)
fTE ettt malloc(3C)
free blocks, find for mounted file SYStEIMcccceeruiruiriiiiriiiinieninic ettt ustat(2)
free disc blocks, report number of bifdf(1)
free disc blocks, report number of df(1M)
free i-nodes, find for mounted file system .. ustat(2)
free MEIMOTY SPACEeeveeviuiiiiuieiiitieeiieteetet et ettt sttt se b et eaest et be et ettt ae s e s et et esaeenensenee memalle(2)
FTEOPEIL ettt bbbt fopen(3S)
frexp frexp(3C)
FSCANE ©.eeiiei ettt bttt st ettt b et et et ene b ae scanf(3S)
SR et bbbtttk et et ba b et n b e et b enenns fsck(1M)
SCK e v fsck(1M)
fsck(1M), list of file systems t0 be checked DY .ooveeveeeerireniirieierecce et checklist(5)
FSCIEAIL oottt ettt et ettt b et et e et s e neeen fsclean(1M)
fsdb fsdb(1M)
fseek fseek(3S)
FSEAE weviurieeiie ettt e stat(2)
fstat(2)/stat(2), description of structure returned by these €allsc.coceveverrueurererieueeeercrisenieeeans stat(7)
FEEIL ettt ettt e fseek(3S)
FEIINE oottt ftime(2)
FEW et .. ftw(3C)
functions and constants, math .. math(7)
EWTIEE eveeeeitet et fread(3S)
fwtmp(1M)
.. gamma(3M)
.. ecvt(3C)
BETICAE wviiuiiiitiieiet ittt ettt e h et b et bbbt e b e a bt ae s b e et et et e nnene gencat(1)
general terminal interface ... termio(4)
generate a formatted message-catalog fileccooooiriiiiiniiiiiiii e gencat(1)
generate C oW GraPRlccoooiiiiiiiiiice ettt et ettt et et sa e et nne cflow(1)
generate encryption K€yccccceveveeeieriiinecneeneenennnn. makekey (1M)

generate uniformly-distributed pseudo-random numbers .. drand48(3C)
BB ettt bbb e e get(1)
get date and time more preciselyccceeeeeriirreeeeriennnen .. ftime(2)
get entries from symbol table (name list) of executable filecccoeeererenreririnciiiiieeniieeeeenee nlist(3C)
get file system descriptor file entrycccceeveeereeeennenns .. getfsent(3X)
get group access list ...ccceeveennnnne. .. getgroups(2)

get message from a catalog . getmsg(3C)

B INESSAZE QUEUIE .uvveveieraeeuiirtieteieetenteteeuteetesatesaeasrassesstesaasseeseaseestensenseansesssisessseessanssessensnenee msgget(2)
get name of current hostccccoceeecnecncns . gethostname(2)
get password file entrycccceceeerieinnenn. ... getpwent(3C)
get pathname of current working dir€Ctoryceoeeverieieriieieerieeiei et getewd(3C)
get real/effective user, real/effective SrOUDP IDSc.ccccevirerirreinrereirieinirieieeenaesesesssesesesesesassseseeeesesens getuid(2)

Permuted Index

get set Of SEMAPNOTESo.iviiiiiiiiiiiiiii e semget(2)
get shared memory segmentcccoeeevuiiiiiiciennnens shmget(2)
get special attributes for Group ..o .. getprivgrp(1)
get x.25 line woveeeeviieeecicene . getx25(1M)
gete gete(3S)
GETC regexp(7)
BOUCHAT oottt ettt ettt e eae e ... gete(3S)
BRECWA 1ttt ettt et ettt sttt et et et eseese b st e h et et easereneas . getewd(3C)
BOEEEIA 1ot s st b getuid(2)
getenv getenv(3C)
BELEUIA .oiviriieie et getuid(2)
getfsent .. getfsent(3X)
BEEGIA oottt ettt bbbt a et aene e getuid(2)
BEEETEIIE .ovetitietititeiete ettt ettt et se et e e se et e st e st eat b e be st et e ebe et e b et ebe s e b eaeeneeseesenseseebenaenes getgrent(3C)
getgrgid getgrent(3C)
getgrnam getgrent(3C)
getgroups getgroups(2)
gethostname . gethostname(2)
getitimer ... getitimer(2)
getlogin .. getlogin(3C)
getmsg getmsg(3C)
getmsg, insert calls using findstring OUEPUL «...ccoovivuiiiiiiieiiiecc e insertmsg(1)
getopt getopt(1)
getopt getopt(3C)
BEEDASS 1ottt e et b e ettt eb et e et getpass(3C)
BEUDEID c-vuteutentertatiesteteteatebe st et ebeeaea bt e he st e a e e st et e ese s es b e st eates e bttt b ent e bt s en b e s e s ensestes e st bebentes et e st entseene getpid(2)
getpid .oocoeeeecnnnns ettt tee—e et e taaateht e e ettt e eh e e s be b e saaeehe s e eabeeheene ettt e e e teehnen getpid(2)
etPPId o e eeteetteheeeesteeseesstereesseestesteeseeterteaeeatesenntenteeateseeteseenbenaean getpid(2)
getprivgrp .. getpnvgrp(l), getprivgrp(2), setprivgrp(1M), privgrp(5)
BOEDW ceetetieiteettieteeste et e et e et eeae st e eteeeaeetseeseeseetseeaaeereeseeeaters e b e etsesteaseeatenbestaenbenbeenseseeneetestentaennans getpw(3C)
getpwent getpwent(3C)
getpwnam .. getpwent(3C)
getpwuid ... getpwent(3C)
BES ittt ittt bbb et eh b b et e bbbt et b et h et s st eh e bt b et ekt e bttt aebeenens gets(3S)
get/set date and BIME ..occveeereeeeririeeiee ettt ettt sna et neneaene gettimeofday(2)
get/set special attributes fOr STOUDccocvriireeerieiirieeinieee et esenenens getprivgrp(2)
get/set value of interval timer ... getitimer(2)
GEEEIMEOTAAY .ovvveuiiieiieeec ettt ae e gettimeofday(2)
BEEEY ottt ettt ettt h e eh ettt eateteeterseseeseeaenseteerese s eneenseseete et ete et enannan getty (1M)
getuid getuid(2)
getut ..ooeveennins ... getut(3C)
etW e ... gete(3S)
getx25 getx25(1M)

gmtime ctime(3C)
goto, non-local setjmp(3C)
grammar, Create CONEXE-LIEEciiiiiiiiiiiiiericie ettt ettt e yacc(1)
graphics devices, information for those with crt’s graphics(4)

grep grep(1)
BIOUD coviiitiutiteieeueuentetestteseseu e neneseeteueatesestnten et es et ebes e seaessesenteses e st seeseneebeseae e b e b et eb s et ese e reeeseneasenens group(5)
BTOUD ACCESS 1ISh, SEE uveirrirriiiiieiieiiti ettt see et e st ettt e e e st e e saaessbeseaeestresssaesetessaesabeenesseeennes setgroups(2)
group, change ID of user newgrp(1)
GLOUD f1€, ClOSC ..eeutiriiiiiiieite ettt ettt ettt e e et te s et e eba e bt esaeaaeestenbessaentenaeetenbeenes getgrent(3C)
group file, description of /etC/GroUPccovvuiiiiiiiniiiiiiicciei s group(5)
group file, read one line from getgrent(3C)
SroUD file, TEWINA ...veiiiiiiiiiiiiiete ettt ettt sae et sne e s ene getgrent(3C)

17 -

Permuted Index

group file, search for matching group IDccccoiviviiiiiiiiiiiiiiiiicc getgrent(3C)
group file, search for matching group namecccceiviviiciniiininiiii getgrent(3C)
group ID, change fOr fIlecooceiieeiiiiiiiiiieci et chown(1), chown(2)
group ID, change for user ... newgrp(1), sh(1)

group 1D, GEt fOr PIOCESS ..eeuvevieeriieirieniei ettt r ettt ettt sttt bbb s ettt snennenes getpid(2)
ETOUD ID, PIIIE ceviiiiiiieii ettt ettt ekt id(1)
group ID, search group file for matching getgrent(3C)

group ID, setcoceeeeee. .. setuid(2)
group ID, set for process . . setpgrp(2)
group Memberships, SHOWcociiiiiiiirieiieieii ettt sre e e sassa s groups(1)
group name, search group file for matchingc..cccceeivirieeiiiiiienienineeeeeceeeeee getgrent(3C)
group/password file checkersc.c....... ... pwWek(1M)
BTOUDS vveeeenrenseessensensansessassaessesssessesssenseesseeseannesssensesssensensaensensenseessessensenseessessessseseensessessuesseensecnne groups(1)
group special attribUtes, etciviiviiiiiiriiiieecet s getprivgrp(1)
group special attributes, set setprivgrp(1M)
BTPCK teeteiieiteie et e ettt e et e et et et e st e et e e b et e st e nte et e b e naae et b e eseenten s e st ente st e st senreme et eheenneeeheeneenne pwek(1M)
a5 o1 OO O PSSP U SRS POROTOO group(5)
gsignal ssignal(3C)

BEEY oo . stty(2)
handling facility, variable argument list . varargs(7)
hangups, run command IMMUNE 0cc.couiiiriiiniiieiiiiiieieee e rae e nohup(1)
hardware name, get . uname(1), uname(2)
hardware trap NUMDETS, LISt Ocovevriiriiiieiieie ettt sre e aees trapno(2)
hash Search tableSciiiiiiiiiiiii e e hsearch(3C)
header, write LIF volume on filecccoomiiiiiiiiiiiiiiiic lifinit(1)
heap size, change for program chatr(1)
BIEID ettt s a e een help(1)
help, get fOr SCOS TOUBIMES ..ouvireeerieiiieieieeteet ettt e et e seesbt e esse et e beasasaeemeesieesaeesbesaees help(1)
hexadecimal, 0Ctal AUINID ...c.eeveiiiiiiriiiiiitiiei et od(1)

hier .o BRSO OO PRRRROONY hier(7)
hierarchy, file system FE OO PO hier(7)
host name, get gethostname(2)
host name, setccocovirieiiieiiiinnnn, sethostname(2)

host system, set/print name of current . . hostname(1)
ROSEIIAINE ..ottt ettt sttt ettt ee e saene hostname(1)
hpib interface, deSCrPEION OF ...cc.ivvieciiiiiiriieiieie ettt et e e enes .. hpib(4)
hpnls hpnls(7)
HP-UX implementations, conditional compilation depending onccccevvviiiinviiiniciiiinnncnnnn, model(5)
HP-UX implementations, definition of constants which identifycccocoeeiiiininciniiniiiinnnnn. model(5)
HP-UX machine identification ... model(5)
HP-UX revision information, Getcccceeeeeiiiirriinienieieniieeeicieseccreterc ettt revision(1)
HP-UX version Name, etcccccuevirrueriiiiiiiiiiineniiicicee s uname(1), uname(2)
BISEATCHL ettt et hsearch(3C)
hyperbolic functions . .. sinh(3M)
RYDPOb v hypot(3M)
hypotenuse function for calculating hypot(3M)

id(1)

ID’s, set user and group . setuid(2)

EIUE oo e e e eeeeeeeeeeoeesemeeesneeseeee e eeeeesemee e e s e eeeseesseseeeeeee e eeese s e eeeeeeeeeeeene e eeeeeeeereen init(1M)
TN T ettt ettt e st e b be et e bt e ae et et e et e st e s e et et b e eaeent e st e et e bt e ae e b e nenaeean e e saeennes regexp(7)
init(1M), control information for . inittab(5)
IMEEETOUDS «veuveueeetetieieiet ettt et et ettt eate s e e e s e seete s essesees e se e es e st esees e e enteseeneeseneeseeesenseneearen initgroups(3C)
initialization of system state and PrOCESSESeeeeierierieeriireereriiritereentteeee e e serreseseseeesieeseesaeens init(1M)
initialize group access listccceevereeevevieieecieieieeeennns initgroups(3C)
initialize hard disc, flexible disc, or cartridge tape mediaccoceeverircririiiieeeiiiinenieiiines mediainit(1)

- 18-

Permuted Index

initialize SDIF VOIUINE .ooviviiiiiiiiiiiiiitiitece ettt s ae st s s et s ee sdfinit(1M)
initialize terminal type and mode on 10GINccoeciiiiiiiiiiiiicic tset(1)
ITBEAD vttt ettt ettt b ettt a b ae et b et R bt en et nnie et e st enen inittab(5)
i-node, clear i-node by zeroing it out .. v clri(1IM)
i-node, description of i-node format inode(5)
i-node, enable access to i-node for file SYStEM FEPAIT ...c.eveveeviviirieiiniiiirenieeen et fsdb(1M)
i-nodes, create file name vs. i-node listc.coceveviriencnnnne ncheck(1M)
i-nodes, find number of free i-nodes in mounted file system . ustat(2)
input and format data from buffered open filec.ccoiiiiiiiiiiiiiii e scanf(3S)
input and format data from standard input scanf(3S)
input and format data from string . . scanf(3S)

input commAands t0 SHEILveciiiiiiiiirieiitee ettt ettt et e e neeeens sh(1)
input control, description of input control for terminalc.ccoceeeviiniiniiiiiiiiii tty(4)
input/output between process and command . popen(3S)
input/output, description of buffered file stdio(3S)
input/output operation, get current byte offset ofcooveiriririiinienc e fseek(3S)
input/output operation, repoSItION NEXtceceveririeeeiiiriirieieiet sttt s fseek(3S)
input/output, output character/word to open file or standard output pute(3S)
input/output, push character back into Input Streamcocovevevnecnnieniienieecnes ungetce(3S)
INPUL/OUEPUL TEAITECEION ueuveveirtiniitieeteieeiee ettt ettt e sh(1)
input/output, write string to open file or standard output puts(3S)
insert calls to getmsg using findstring outputcccccceet . insertmsg(1)
IStAll oo .. install(1M)
install commands into file system ... install(1M)
install object files in binary directories ‘cpset(1M)
integer, get largest integer smaller than x floor(3M)
integer, get smallest integer 1arger than Xcccceveiiriviieiiiieciecee e .. floor(3M)
integers, convert between 3-byte and 10Ngcceeviviiniiniiiiiiin 13tol(3C)
integer trap control intrapoff(3M)
integrity check of operating system in SDF D00t area(s)cocoveeiriereieiniimneciiinsiiie s osck(1M)
interactive IMAGE database aCCESSoviiiiiiiiiiiiiiiiiciicicc e query(1)
interactively write (talk) to another user . .. write(1)
interface, description of hpibcccceceevee. hpib(4)
interface to blocked/unblocked disc, description of

interface to terminal I/O, deSCriPtION Of ...eecveriiriiriiiereeiieiereet et et tty(4)
interleave factor, establish for SDI" volume . . sdfinit(1M)
INterprocess COMMUNICAtION, CTEALE ...cviuireieiiieieieieierieiete et ettt ettt eae bttt see s ebeeneenes pipe(2)
inter-process communication facilities SEALUSeoeeviiiiiiiiiiiere e ipes(1)
inter-process communication routines stdipe(3C)
interrupt character, description Ofc.occciiiiiiiiiiiiiini e tty(4)
INETAPOfT oo s intrapoff(3M)
I/O between process and COMMANAcccceiieieiieeitiinieieieeretetet ettt sttt s e s eneais popen(3S)
I/0, description of buffered file ... stdio(3S)
I/0O operation, get current byte offset 0fcccoiveriiiiiiiiiiiie e fseek(3S)
I/O operation, rePOSIEION NEXEc.eeriiieieriieieiiieerieeiieeesiee ettt seen et nensea s ssenes fseek(3S)
I/0O, output character/word to open file or standard output pute(3S)
I/0, push character back into INPuUb SETEAMc.veveervueeiririeieirieieirieeee e ungete(3S)
T/0 TEAITECHION ..vviveueeiiteiiet ettt ettt ettt ettt et te e e st s et eb b ese e saene e saeseeeenneneneeaenn sh(1)

gpio_*(31)
. hpib_*(3I)

1/0: GPIO routines (device I/O library) ..
1/0O: HP-IB routines (device 1/O library) ..

I/0: 1/0 routines (device I/0 library)ccceeuene ween 10__%(31)
1/0, write string to open file or standard output puts(3S)
TOCEL 1ottt aenes .. loctl(2)
ioctl(2) system calls, deSCriPtiOn OFccceuiiireeueiiiiiierieieiieeret e tty(4)

TOIMAD 1ottt et eb e e e etk ea e e iomap(4)

Permuted Index

1 0T PRPR
isalnum ..

isalpha
isascii
isatty ..
isentrl
isdigit
isgraph ...
islower
isprint

ispunct ctype(3C)
ISSPACE vevvrerrerreereenrnne .. ctype(3C)
issue Identification fllecccoiiecreriiiierieietee et issue(5)
ISUPPET eveeveeveenieecnennes .. ctype(3C)
isxdigit ctype(3C)
J0 et bbbt R e b b sa e e e bt bessel(3M)
T bbb e a e bk bbbt bt e et e n et b e s bbb ae s et bessel(3M)

)
join, perform join of two data base relationsccccoeevieiiiiinieiininiiiic e join(1)
Kana8cccceveieeeeiiiincienieeee et ... kana8(7)
KEITIIE 1ot ... kermit(1M)
key, generate encryption makekey (1M)
KIIL ottt ettt et e e e bt e abe e e st e b e e e b e et e at e e reeeaee s antes kill(1)

Kkill character, desCription Ofcccceuiiiiiiiieriiirinicieee et tty(4)
killall killall(1M)
OO O OO OO PP PROS Is(1)
13tol . 13t0l(3C)

164a .. a641(3C)
langid langid(7)
langinfocccooviviiiiiiiiiiiine langinfo(3C)
language identification variable ... langid(7)
language INfOITIALION ..c..eoueicuiriieiiieeeeeiceeeii ettt s s sa e s sa s sas s langinfo(3C)
last-accessed time, update for file .. touch(1), utime(2)
last-changed time, update for filleccccccoiiviriiiirinieec e touch(1)
last-modified time, update for fileccooeeiniiiiiiiiiiiii touch(1), utime(2)
LA oo eeeees s e 1d(1)
TAEXD vveueeveneeterietenitee ettt ettt ettt e en e frexp(3C)
JEAVE .ttt b e r bbb bbb s leave(1)
length of string, get string(3C)
1 OO OO OOUETOPTETOPOIOPROO lex(1)

lexical analysis of text, generate programs for lex(1)

libraries and archives, create and maintain ar(1)
library file format, description ofcccccevveeveerennen v ar(b)
library file format, description of cpio archive format .. cpio(5)
library, find ordering relation for objectcc.......... .. lorder(1)
library, table of contents format description . .. ranlib(5)
LIF directory, list coOntents ofccoouiiiivieiiiiininiiiiincicce e lifls(1)
LIF flle, FEIMOVE .voveuiiiiiiiiiciciicict ettt a sttt bbbt n e bean b a lifrm(1)
LIF file, rename lifrename(1)
LIF fileS, COPY 1N OF QUL .eevueerieriereeerieieneeeniesseeseeetesetestesieesueeseessensasessesseessesseesseessesseesensesssesseessesssones lifep(1)
LIF volume header, write on flleccooiriiiiiiiiiiiiiic e lifinit(1)
lifep . lifep(1)
lifinit lifinit(1)

Permuted Index

LS 1ottt RS s e b et neae lifls(1)
lifrename lifrename(1)
LHETIN 1ot e en lifrm(1)
T OO OSSO OO ORI line(1)
line, copy from standard input to standard output ... line(1)
D@ COUND vttt bbb s eas bbb e b e be we(1)
line length, put line length specifications in text fillesc.coceviininiiiniiiinininii fspec(5)
linear search and updatecccecerveererenenenieennes . lsearch(3C)
lines, count number contained in filecccoiviieiiiiiiiiiiiiii e we(l)
lines, find common lines in tWo filesccooviiiiiiiniiiiiiiiiiic comm(1)
lines, find unique lines in two files

lines, merge in one Or MOTE fIlScoviiiiiiiiiiiiiiniiiiieeci e

HIK oottt et

link, copy, or move files

link, create to or remove from file link(1M), link(2), unlink(2)
HDK @AIEOT .ouvvinreueuiieteietcit ettt ettt bt b e bbbt s s bbbt e e h b b 1d(1)
link information utility, object files linkinfo(1)
DKL «evovevintetinieieaeetet et sttt et b e st et st be st st e et b et st e b et s st b e b e st et e s e b e R st st h b e ne sk ekt s bbb be b ene et e st s 1d(1)
linker/assembler executable output file, description of .. weee aw0Ut(B)
BOKINFO ©vvvvvveeeereeeeessssecsssssssssssesssesseeeesssesssssssssesssnnas linkinfo(1)
BEILE v veoeeeeeeeeeeeooesoeeee oo oo eeeeeeeeeees e e es e s e s s lint(1)
list active Processes in SYStEIMcccivieiiiiiiiiiiiicic e ps(1)
list contents of BIF direCtOriesccoeveeiiiieiiiiiieiiiiieci e bifls(1)
list CONEENES OF AITECLOTIES ...vuvvieiiiiiiiiiiiiirit ettt beb s s b s b nens 1s(1)
list contents of LIF dir€Ctoryccoveveviiiiiiiniiiiiincicicntecetc st e lifls(1)
list current USErs ON SYSEEIMciiiiirreriiiiiititiiieete e bbb who(1)
list device drivers)
list file names with associated I-N0AEScceeueriivreiiiiiniiii ncheck(1M)
list spooled uucp transactions grouped by transactioncccccecviviiiiiiininiini e uuls(1)
list users and their current processesc..ceceevenuees whodo(1M)
I ceeeeeeeeoomee e sesseses e et 1s(1)
I ettt ettt b e st a et h et ettt bbbt s s e e b e rene cp(1)

localtimec.ccvvuernene ctime(3C)
locate files In file SYSEIM ..ooueuiiiirieiiiiecciet e find(1)
locate source, binary, and/or manual for program .. whereis(1)
L10CK oottt lock(1)

lock process, text, or data in memory plock(2)
10CK LEIIIINAL .vvveviiiieciieiitiit ettt sttt sttt s b s n b lock(1)
JOCKE ettt e bbb lockf(2)
lock/unlock process address space or segment .. memlck(2)
OB oottt bbb e s e bbb e bRt b bR s bt e eae exp(3M)
10g ZaMMAa FUNCEION .euiitieririeieieceiei ettt ettt b e bbb st ab e b esne s gamma(3M)
log results of work requests on remote system . .. uucico(1M)
LOZLO ettt b a e bRt R et ea e bbb ae e exp(3M)
logarithm, COMMON ...cc.ciiiiiiiiiiiiiiiiniiiee ettt s b e br s ers e bn e aees exp(3M)
logarithm, natural exp(3M)
logging file for system errors .. errfile(5)
logging in on HP-UXcccccoviiiiiiniiiiniiiicniiien . login(1)

logical block, set number of bytes per logical block sdfinit(1M)
Logical Interchange Format descriptioncccoveeveiiirieeniiiiiieeieeiie sttt csne e snaeeens 1if(5)
login login(1)

login, establish baud rate and communication with terminal duringccocecceviniiiiiiiiiiinninnns getty(1M)
10GIN NAME, GEE covervireerrerieieieie ettt see et sr e enne logname(1), getlogin(3C)
login name, get ASCII string representing ... cuserid(3S)
10gIN NAME, PIINE cuorveiiiiiiteieiiiieeict ettt et b e a b bbb r s a bbb b ene id(1)

- 91-

Permuted Index

login name, record for each uSer (ACCOUNLINE) .ovevvririrvircererienirrciiree e utmp(5)
login shell, change defaultc..cccocecvvinnnnee . chsh(1)
login time, record for each user (accounting) utmp(5)
lognameccceviviviiniiiiini logname(1)
logouts, run command IMIMUNE 0 ..c.eiiiivieiiiiiiiiiiiiice e e e eae s nohup(1)
long integer, convert t0 base-64 ASCITccooviiriiieenniininiii e a641(3C)
long integer data access, machine independent sputl(3X)

long integers, convert to/from 3-byte integers 13tol(3C)
TOMBIINID +vvveeiiinieeeeeie ettt e et sat e et et e e e e s e e steee s raesaee s se e e et e se s e emn e e e ettt e e e eaee s ana e s e aneesans setjmp(3C)
TOTAET .oevevcrveeieiecetsie et .. lorder(1)
lower-case to upper-case character CONVErSIONcccviiiiiiiiiiiiiienie it conv(3C)
18 ettt ettt ea e e e Rttt b etk e et e et b bR ea st aes 1s(1)
Isdev ... lsdev(1)
Isearch . . lsearch(3C)
Iseek . «o. Iseek(2)
. 1s(1)

. 1s(1)

...... 1s(1)

13tol(3C)

.. m4(1)
machid(1)

MAChINE TD; GO cueuvrvevereeereririenieteereetsteeeeet et erteser et erese st s besestebesesaesessenneessesseeseeasenes uname(1), uname(2)
MACKINE PrOCESSOT EYDE wveeveurierieieireeiierteiiinttetenreeteste sttt eee s e s e sas e st b et e sbbesae e b eessessessresasensaesons machid(1)

machine-dependent values . values(7)

IMAaCro Processor m4(1)
macros for formatting entries in the HP-UX Reference manual ... man(7)
macros for formatting text ... mm(7)
magic numbers, description of ... magic(5)
magic.h, description ofccocceviririiriiievieiiinneeene ... magic(5)
magnetic tape, description of raw interface and cONEIOLSccceveeeiirirriiriiieeiiiie e mt(4)
magnetic tape, manipulate and/or POSIEIONccoeeireniiiiiiiiiiiin i mt(1)
ATl i . mail(1)
mail, read or send t0 OLher USErSccooooiiiiiiiiiiiiiii mail(1)
maintain libraries, archivescccoocoiiviiiiiiiiiiii e ar(1)
maintain, update, recompile programs . make(1)
INAKE ©1verietitii bbb a et e b e et b s bt make(1)
make a BIF directory bifmkdir(1)
make file system on Special fleccovvviiiiiiniiiei s mkfs(1M)
make posters in large letters banner(1)
make unprintable characters in a file V]Slble Or INVISIDIE vvviiiiiiiiiiiiiiiec vis(1)
MAakeKeY ..ooiviiiiiii . makekey(1M)
malloc malloc(3C)
TIHAIL ©eveniutetenteeet et ettt et et et ese bt e s b et ea et e et s es e sa b eb e ae et at ek b e e b et et eae b a et b b et sa e b b e e aea e r e s man(1)
man macros, deSCriPtion Ofceiiiiiiiiiiiii s man(7)
MAanage binary SEArch treescoccoveeeriiiereriieine ettt st tsearch(3C)

manage hash search tables .. . hsearch(3C)
manipulate wtmp records fwtmp(1M)
mantissa, get from floating point valueccccceiviiiniiiiniiiiin e frexp(3C)
manual, create preformatted manual pages for on-line . catman(1M)
MANUAL ONFIINE vttt ettt et bbb man(1)
manual page (on-line), locate for programccccvveecreerrcccnnnneenn whereis(1)
map characters into other characters during copy to standard outputccccceeevvceiiiiniiiniiinnnniinnn. tr(1)

mapping, physical addressc..cccceceeveereennnnne .. iomap(4)
margins, put margin specifications in text files .. fspec(5)
mark Command Set 80 cartridge tapeccccviiiiiiiiiiiiinc e teio(1)

99 -

Permuted Index

mark SDT operating system file as loadable/non-loadablec.ccoooviiiiiiiiiiinie, osmark(1M)
mark/unmark volume as HP-UX root VOIUMEccocevuviiiiiiniiiiiiniiiicecsceveese e rootmark(1M)
mask, get/set file-Creationcccceeiiiiciiiniii sh(1), umask(1), umask(2)
master device information table . master(5)
DAL oottt e bbb as math(7)
math functions and CONSEANESccuvuieiriiiiiieiiiiicie et math(7)
mathematical error handling .. . matherr(3M)
matherrcoecevvvinennenne. matherr(3M)
MCBB000 ASSEIMDIET ..cuveveuriiiiiiiteeteiieteeteeet ettt ettt et e e st et e bt esesbe et e st e ebeasestas et ebeasesresnesnean (1)
mediainit medunmt()
memadvise . memadvise(2)
memalle ..oooveveiiieennnee ... memalle(2)
MEMDbEIShIPS, SHOW ETOUD ..eveueiriitiiiesereieieterirtitetesiesesestesesesseseseesesenesseseenesesessesesestesensatseseeseneenene groups(1)
MEMCRMA Lo b memchmd(2)
memfree memallc(2)
memlck memlck(2)
TILCITIOLY +euvveuveeuseseesseessesseessesseansanssessansessessesssessenssansessensanseensessesssensasseessesseeneeesesseensenseenensnensens memory(3C)
memory, allocate a block of . . malloc(3C)
memory, allocate for array malloc(3C)
memory, change size of previously-allocated block malloc(3C)
memory, deallocate block Ofcccoeviiiviieiiiiiiieniiiiie e . malloc(3C)
memory management, inform operating system about segment reference patterns .. . memadvise(2)
memory management, modify segment lengthccccoovviiiiiniiiiniini ... memvary(2)
INEMOTY OPETALIONS ©.veevirvererrerierietesseeesesseseesesessesseseessesesseseesnens .. memory(3C)
memory segment access modes, change memchmd(2)
memory space, allocate and Icceceeviriiiiniiii e memalle(2)
IMEMOTY, WIIEE t0 AISC .vevvevriiiiiiiiiiiiiicce it sync(2), sync(1)
memulck memlck(2)
memvary memvary(2)
merge contents of several files ... sort(1)
merge lines in one or more fllesccocoiiviiiiiniiiiinii s paste(1)
merge or add total accounting files acctmerg(1M)
TIEESE teveeverteuteneesieteenteseeseet e st es et es b e s e b et bt b et b e s e e Rttt eb e Rt b e e R bt b e Re s eh s ettt e b a e b e a et e en s Rt b en mesg(1)
message catalogs: MPE/RTE catread(3C)
message control operations msgetl(2)

mMessage Operationsoceeeceeveveereennen msgop(2)
messages, permit/deny to your terminal ... mesg(l)
messages, read Or Send t0 OLHEr USEISccovirvieririerieieiieitene ettt ettt e reeab e ens mail(1)
MesSAZES, SENA 10 ALl USEIS ..iveuvieiiiiiieiiiiee ettt ettt et ee et eerbeenteeseeesteeneeeeanesbeessaeesnte s wall(1M)
messages, send to another user interactively ... write(1)
IIKARY ettt n mkdev(1M)
OO OO mkdir(1)

... mkdir(2)

.. mkfs(1M)
... mklp(1M)

mknod(2), mknod(1M)

................... mknod(5)

TKSEE oeuitiiiteeietit ettt ettt et et bk s a etk s mkstr(1)
mktemp mktemp(3C)
150 15 OO . mm(1)
mm macros, description ofcocecevinenennee .. mm(7)
mm macros, print documents formatted With ..o mm(1)
MNEEAD £ADIE, CTRALE .v.euviviieiiiiiieii sttt ettt b et setmnt(1M)
mnttab.h, description of mnttab(5)
mod function, foAting POING we..eceveeeiieriireeierieee ettt ettt esse s b sttt e eeneete e floor(3M)

Permuted Index

mode, change for fileccouvieviiipiinii chmod(1), chmod(2)
model, Native Language Support . hpnls(7)
model.h, description of model(5)
INOGEIIL 1oviiviiiiietiaieutettet ettt e e bttt e s b st e be b e b et es et b e e b e bt s aeas e e s a et e a e e b a e b ea et ebeanens modem(4)

modem control special file . modem(4)
modf ..o frexp(3C)
modify parameters of SCCS fIleScccoceriruiririiiiiniiiiiiccicc e admin(1)
modify segment lengthccccceceevvnienn. memvary(2)
INONIEOT evveveereiiienieieecrccreeecre e ... monitor(3C)
monitor uucp network .. uusub(1M)
TXIOTE .eeveutenteneentenesesee st e e e b e s et st bes b eas e s e seae et b e eas ettt e bt et e b e ea e s e R bR e Rt e R bRt b e e bR e more(1)
INOUNE cvivitiiitiietciceic ettt b e s a et e en s mount(1M), mount(2)
mount or unmount file system .. . mount(1M), mount(2), umount(2)
mounted devices, create table of ... setmnt(1M)
mounted devices, table of those mounted by mount(1IM)cccccceiveininiiiiiinniiineecs mnttab(5)
mounted file system, find special file associated with devnm(1M)

mounted file SYStem STALISLICS ...evvviruereriirieiieicertesnt et ustat(2)
IOVE & QIFCCEOTY vevvviviiiiiiiieteieeiriee ettt ettt st et bsr et et es s ene s ssanenen mvdir(1M)
move, link, 0F COPY fIIES ..ecuiviiiriiiinieeeieetee et bbb s cp(1)

move read/write file POINEET; SEEK .v..iviruereriisiresrietsiseeeietetreseete ettt esesese b bee st ebe st n s saeene Iseek(2)
move to new working directory . cd(1), sh(1), chdir(2)
... msgcetl(2)

... msgget(2)

msgop(2)

IVAIL ¢ttt st e et et ea e sb bbb bbbt s saenteres mvdir(1M)
name, get I0GIN ...ooiiiiiiiiiiiiiiiie s logname(1), getlogin(3C)
name list (symbol table), extract entries from executable file’s name listc.cccoeviveriereirrnreennns nlist(3C)

name list (symbol table), print from object fileceeererererirerreeriernuenene ... nm(1)
Native Language Support model hpnls(7)
natural logarithmcceeenie .. exp(3M)
NCheck ..o ncheck(1M)
network, monitor UUCD ACHIVIEY OIL ..eovvireeiriiiiiciiiiiiientcner ettt ettt i uusub(1M)
network special file, Createcceoeveivieriiiiine ettt mknod(2), mknod(1M)
NeW file SYSEEIMcviiiiiiiiiiiiiiiiii e newfs(1M)
newfs newfs(1M)
newfs newfs(1M)
TIEWETD «eeevtvermesenteseesentesesentesees s eseeseseeseasts s eesen st ese st s e et e s s e Re b eh s ebt b e et e ben s e b et et et et e eaesh s ne et newgrp(1), sh(1)
new-line character, deSCriPtion Ofcccceecerierieiriiieriertere et sae st eat e bebe st e saesaensnesaesas tty(4)

new-line characters, remove extras from file ... rmnl(1)
TIEWS cevirerreueeresrestensesesseseseesesesseseesensesnens ... mews(1)
NEWS, DTNt CUITEIE EVEIIES .veveeevertirrereeesseeteesesseereeseeesieseeseseesseesaessessesesssassesssessessessanssesssensassasnes news(1)
nice nice(1), nice(2)
TILSE ettt ettt ettt ettt ettt ettt b et ettt n et n s ettt nlist(3C)
nlist structure format e nlist(5)
NLS character classificationcoociiveeiiiiiiciiiiiinicc e nl_ctype(3C)
NLS character set collating sequence tablesccccevevieiiiiveneeinieneeneiieceene. col_seq_8, col_seq_16
NLS ChATACEL SEES ..evevereeviuirirrereieiirieiriereetereteeseseseeseseesesesesesseseseseessssenessens ascii(7), kana8(7), roman8(7)
INLS IOAEL «.viinteviuiieieiieieetet ettt ettt ettt e ete e e be et e b e e e s e st sbese et ese it bebesseneensebenees hpnls(7)
NLS native language information langinfo(3C)
NLS non-ASCII String COLAtIONc..oveueveeueriririeinirieieeieieeteieeetee et ssese e esesreveseeseees nl_string(3C)
NLS translate ChAraCterscccveereriierirtereiereneniiteeeec et eteste s sttt e e b e iesessebeseeseseesesnone nl_conv(3C)
DL SEIITIE weuetetinitetcie ettt st ettt sttt ettt et b e e n et ae b b s b s nl_string(3C)

Permuted Index

14 OO OO ORISR PRSP nm(1)
nodename, getcoceeeveenircinninens . revision(1), uname(1), uname(2)

nodename, set/print name of CUITENE ...cociiiiiiviiiiiicecccrccereet e hostname(1)
TIOMIUD w1 vitetiititentestete et et e sieete st esteeseebestesesbebesaeseebe b asbesbessese s asse s sasbe s esseneesesbentes e benbene et etenansbebesaanne nohup(1)
non-ASCII string collation used by NLS nl_string(3C)

roff oo nroff(1)

nroff, format tables for . tbl(1)
nroff, interpret output from nroff for prmtmg .. col(1)
nroff, troff, tbl, eqn constructs, remove from textcccecovviniiniiiiii deroff(1)
numbered-argument print output formatting printmsg(3C)
object code, locate fOr Programcciviiiiiienecnii e e whereis(1)
object file, AEDUGEET FOT ..vovevieiirieeerenieiciereitere ettt ettt se ettt s eee ettt e seenesesaeneanen adb(1)
object file, extract symbol table (name list) entries from nlist(3C)

object file, get S1Z€ OF ...ooviviviiiiiiiiiiiic e size(1)
object file link information utilitycccou.... linkinfo(1)
object file, print symbol table (name list) of nm(1)
object file, remove symbol table and relocation bits from . strip(1)

object files, combiIne INtO PrOZLAINcccoirieviererieriiieierieretriei ettt sb s bbb beeeaes 1d(1)

object library, find ordering relation for lorder(1)
octal, hexadecimal dump . .. od(1)
OQ. ettt ettt ettt ettt b st b e st etk ek et e bt etk At ek st e h etk et ea et b s s e aeasebere s od(1)
on-line manual comMMANAccccovviriviiiiiinii e man(1)
on-line manual, create preformatted manual pages forccccocviriviiiiiiniinincnce, catman(1M)
open ... open(2)
open a file and assign buffering t0 itcccecerrririinreicccrcc fopen(3S)
open file, assign BUMETINE £0 ..covevtiiieriiriiiiiieicicieeee ettt ere s ebe e ste e benenaa e setbuf(3S)
open file descriptor, duplicate dup2(2)
open file for reading or writing open(2)
operating system, append to an existing operating SYSteImMcccocevrverreeecieruerieeneenreenerinieennes oscp(1M)
operating system, change to different OS or different version of same OS . chsys(1M))
operating system, check integrity of OS in SDF boot area(s) osck(1M)
operating system, copy from one or more SDF boot areas to another ... oscp(1M)
operating system, create new operating system from ordinary filesc.ccocveirinne ... oscp(1M)
operating system management package descriptionc.cocevivviiiiiicciininenniennnnn ... osmgr(1M)
operating system, mark as loadable or non-loadable osmark(1M)
operating system, shut down OS with optional re-bootccoeevrreirieerieeiiinieeceeeeee e stopsys(1M)
operating system, split into one or more ordinary filesc.ccceevvierrierrreriirseeeree e oscp(1M)
optarg getopt(3C)

opterr getopt(3C)
optimization routines: CRT screen and cursor control curses(3X)
OPEINA wevieniieieieiieee ettt e .. getopt(3C)

option letter, get from argv getopt(3C)
options, parse command line . . getopt(1)
options, set for terminal stty(1)

)

OPEIONS, SEE SHEIL L.eeiviiiiiieeiitetiriet ettt et ettt a st be bt he e r e sae e senne e sh(1
opx25 opx25(1M)
ordering relation, find for object library or archive filecccocreveiirienniceiiiiciiccccce lorder(1)

ordinary file, create mknod(2)
ordinary file, create or overwrite .. creat(2)
OS, append to an existing operating SyStemcccvveeirioiiiniiiiniiiien oscp(1M)

OS, change to different OS or different version of same OS chsys(1M)
08, check integrity of operating system in SDF boot area(s) ... osck(1M)
OS, copy from one or more SDF boot areas t0 anothercc.cccvveeveeninicnienienenecineeienne s oscp(1M)
OS, create new operating system from ordinary filesccoceovveeveereriiereniinineeinreece e oscp(1M)
OS management package deSCIIPLIONcovvververriieieririeerenieerteereeni et eeeesteeteree e seeseesisasesaesveenne osmgr(1M)

Permuted Index

OS, mark as loadable or non-loadable
0S8, shut down operating system with optional re-boot ...
OS, split operating system into one or more ordinary files

.. osmark(1M)
. stopsys(1M)
oscp(1M)

osck osck(1M)
0SCp oscp(1M)
osmark osmark(1M)
osmgr)
output character or word to open file or standard outputc..c.....)
output, description of formatted /unformatted output to printer Ip(4)
output, description of system handling of terminal output)
output, print formatted data into string printf(3S)
output, print formatted data on buffered open file printf(3S)
output, print formatted data on standard output printf(3S)
output string to open file or standard OULPULcccevveierieriiiniieieniereerereet et e ee e sre e puts(3S)
overlay program onto existing process and execute sh(1), exec(2)
overview of accounting commands acct(1M)
owner, change for file chown(1), chown(2)

page .. et e b bbb b b st s bRt R e bt b b h e bt et e b e sae b et sb et et be et more(1)
page size, set for paged data . uconfig(1M)
paged data, set for program chatr(1)
paging and SWapping €NADIEccceviiviiiiriiniiiiiee ettt saee swapon(1M)
PAM it ... pam(1)

parameter substitution sh(1)
parameters, environment sh(1), environ(7)
parameters, install in ENVIFONIMENTccvveeeiiiiiiciieieiieerett et e st e e s e e e e e e e eaeeesstteeessaaeesanesnnnns

parameters, mark as readonly
parameters, perform left-shift on positionalcccccevveervinieevnniennenn.

parameters, set for terminalccccveeiiiiiieiiiieeenee e

parameters, set for terminal on login tset(1)
parent process ID, get fOr PrOCeSScuecvveereeeiivreeeeiiereirecreeeeereeeeeeeeseereeans ... getpid(2)
parity, settings for terminalcccoeiiiiiriiiiii tty(4)
parse command line options getopt(1)

Pascal compiler pe(1)
PasSWd ...coceveiniinne passwd(1)
password, change login passwd(1)

PASSWOIA ENCTYDPEION «euveiurirueeriiiieitiiteeeteetiesteeeetebeeteereessesseeesessaessaseessesssessaessenseesassaasaassessesseenes crypt(3C)
password file, close getpwent(3C)

password file, description of passwd(5)
password file, get line containing matching user IDcccoceviriiiiniiniiiiiciniencrceceee getpw(3C)
password file, output line similar to those contained in .. putpwent(3C)
password file, read one line fromcccevvrecennnnen . getpwent(3C)
password file, rewind getpwent(3C)
password file, search for matching user ID getpwent(3C)
password file, search for matching user namec..ccccoeveuee ... getpwent(3C)
password, read from /dev/tty or standard inputceccn.n.. ... getpass(3C)
password/group file checkers ... pwck(1M)

paste paste(1)
path name, get for terminal ttyname(3C)
path name, isolate directory name from basename(1)
path name, isolate file name from . basename(1)

pattern, find and process within text . awk(1)
pattern, search contents of file for .. grep(1)
PAUSE eonveeeeiieereeeteeeneeteeresaeeieenans pause(2)
pause, suspend process for interval sleep(3C)
PO ettt ettt ettt e a e et e sttt e et et e s e e aeete e e beas e s e eaeeatest e s e st en b e eaeeehe e beaRb et e en e e beeraabe e rsertaensaneestantaenten pe(1)

- 26 -

Permuted Index

PCIOSE ettt b bbbt b bbb et eb e bt s ettt be et ene et ene s popen(3S)
PEEKC regexp(7)
periodic, automatic sync syncer(1)
permission bits, change for file chmod(1), chmod(2)
per-process accounting file format ..o acet(5)
perror perror(3C)
personal applications manager, a command Shellc.coiiriirieneiiiiieeiie e pam(1)
physical address mapping iomap(4)
pipe pipe(2)
pipe, create/close between process and command popen(3S)
pipe, get intermediate data from . .. tee(1)
pipeline, createc.ccccoceeveervenunens pipe(2)

pipeline, get intermediate data from tee(1)
place error messages from C source into a file ... mkstr(1)
plock plock(2)
plotter, description of hpib interface to ... hpib(4)
PODEIL eiivinnieniiireeeaiieireeeseereeeseesseensaeesanas popen(3S)
port, database listing terminal type connected t0 €achcccevviiiviiiniieiniiiniienieree e ttytype(5)
portable code between HP-UX implementations, typedefs for model(5)
position magnetic tape mt(1)
positional parameters, perform left-shift Onc.ccooiiiiiiiiii e sh(1)
posters, make using large letters banner(1)
POW ceeeeiecneeenaainas exp(3M)
power function . exp(3M)
powerfail bre(1M)
T ettt ettt e b et b et et s e ae st R bbb e eE e e e Rt ekt et e R b et eh e e Rt eA et en b en e e ae e b en b et st ets b et ene e et enten pr(1)
prealloc ... prealloc(1)
preallocate disc storage prealloc(1)
preprocessor for C compiler ... cpp(1)
print and format files pr(1)

print and summarize an SCCS file prs(1)
print arguments after shell interpretation .. echo(1)
print, copy, and/or concatenate files cat(1)
print current SCCS file editing activity sact(1)

print documents formatted With MM MACTOSeceeiiiiiiiieiiiierieiee et eas mm(1)

print effective current user id . whoami(1)
print formatted data on standard output, open file, or string ... printf(3S)
print formatted output from varargs argument list vprintf(3S)
print formatted output with numbered arguments . prmtmsg(BC)
print last part of file .. tail(1)
print list of users and their current processes whodo(1M)
print name list (symbol table) of object file nm(1)
print name of current Working dir€CtOTYevciririeriiirieiriet ettt s pwd(1)
print news items news(1)

print time and date date(1)
print user, group IDs and names . 1d(1)
printer, description of formatted/unformatted OUEPULcooeeuiiieiriiiiiiiiie e Ip(4)
printer, description of hpib interface to hpib(4)
PIINEET OPEIONS, SEE teveerueeieiieeiiesieritestetesestteteeteeteetseetesseeaeseesseeseessaessasssessaensessesseessessesessasseesseensans slp(1)
printf printf(3S)
prmtmsg .. printmsg(3C)
priority, run command at lower or hlgher . nice(1), nice(2)
privileged values format privgrp(5)
procedures: shell procedures for accounting acctsh(1M)
PIOCESS ACCOUNEINE +oiuvviiuieiiiieiieiiteeiee et ertee et e et st te e ete e sttt e st e esbe e ebe e e s seanteesesesnasessseaseereeeeanens acctpre(1M)

Permuted Index

Process accounting COMMANAScoceveeerererrruererterereresteseresesesessereeseseserassessasesesestssesennssesessesssesenes accteom(1)
process and system state initialization ..o init(1M)
process, change data segment space allocation for brk(2)
process, change 0ot directory of ..o chroot(1), chroot(2)
DTOCESS, CTEALE 8 TMEW ...oovuueiiiiirisiieieaescacie ettt a e esea st s b et a bttt be bbb eae b s e se b st et ebese s fork(2)
process, create/close pipe between process and command . popen(3S)
process, enable break-point debugging of child process ptrace(2)
process, format of core image of terminated PrOCESSccecveererriereeiieierecnienneririierreseeeseeseesreenanaas core(5)
process, get ID, group ID, and parent process ID of getpid(2)
process, get real/effective user and real/effective group ID’s for ... getuid(2)
process, get/set file size imit fOrcccoeeviviveerinecnnncrennne ... ulimit(2)
Process Group ID, SEE ...cocueririiieiiiriieienteiececetenieite sttt e e sta et et esbe s s e ae et b s s e b e naaesbesaaesaenee setpgrp(2)
process, lock/unlock address Space Or SEEMENLEeervreerirrereeeeniieteeeieeeeeeeeestesereeseresseraeeseeseneene memlck(2)
process number, get getpid(2)
process, overlay new program onto eXiStiNgc...cccceceererveeriererieenenieneerieneeseereseeeenaeeens sh(1), exec(2)
process, print accumulated user and system time elapsed fOrcccccccovveeriiirierseineenieeneeeie e sh(1)
process, Send SIGIOT £0cccciriiuiiiiiiiniiiiieee ettt ettt s st nene abort(3C)
process, Send SIZNAl £coveiririerieieieiree et eeee s . kill(1), kill(2), abort(3C)
Process, Set GrOUDP ID FOTcccoioiiieiriiriiieireeiite et ettt ettt ettt s et e e sae st sesaseenn setpgrp(2)
DTOCESS SEALUS, TEPOTE uveeveeeriereeeteeieiteeeaieseeeteeteeseeseteeseeeatesseessessssseensesssenssessessessensesssontesssonsesstessesnssens ps(1)
process, suspend execution for interval of time . .. sleep(1), sleep(3C)
process, suspend until SIgNAlccoiiviiiiiiiiiii et pause(2)
process, terminate kill(1), sh(1), exit(2), kill(2), abort(3C)
Process, time €XECULION OFcccvierieeeiiiiirieeeiiieeeteeeteeeete et e eareeeaeeeseebeeereeeeteessteesssenseessseerseseseeean times(2)

process, wait for completion of . sh(1), wait(1), wait(2)
Processes, LSt ACEIVEc.iiiiiiiieiiiii ettt ps(1)
processes, send signal t0 all USET PIOCESSESeveveerrurrerueririrueriniereeeeiieiireeiseeseeseeesesmnnesessssssensne killall(1M)
processes, specify maximum number of processes per user .. uconfig(1M)
processes, terminate all USEr PrOCESSESc..ccceeveeriirverrieriiiiuietenieesiesseeeseeeseessnseessessesseesseses shutdown(1M)
DPLOCESSOT BYDE weovvvinuenriiiiueteiieteies et eueste st se ettt e se et e s b e bea e st e s et et eat et essemt et essetanensesebensenseneaneas machid(1)
profcceeee. ... prof(1)
profil . profil(2)
profile, create for program during execution profil(2), monitor(3C)
Profile data, AISPIAYcccceeiriieiieeriieeieieiie ettt e eteeecre e eteeeeteesaeeese e e s eeeseeeessaeeaeeeeseerseesteenstenreenaneaeanes prof(1)
profile files, description of /etc/profile and $HOME/.profile profile(5)
program, add diagnostics t0c.cccceeeerinieciicneieiinnenne . assert(3X)
program, change internal attributes ofcccccciiiiiiiiiiiiiiiiii e chatr(1)
program, Check/VEIIfY Cc.ccviviriirieicieiiieieecicieieie ettt te sttt se s st et e e e s s sesetassannens lint(1)
program, create execution profile for profil(2), monitor(3C)
program, create from ODJECt lESccevvirieriiriiriiiireiirieecterteereesteeae et cete et ae et et eaeere et esteeaeeraesaeensens 1d(1)
Program, deDUGEEL FOTcccoveeiiiiiiieeiiiiteeetrtere ettt sae ettt e e et s e bestesressaeesterneasaesreassenseseesanees adb(1)
program, execute command fromccccvveeveriruennene. . system(3S)
program, force action associated with signal to be takencc.coeecrveriiiiineiiiiennienineee e ssignal(3C)
Program, fOTMAt C ...coeovrieeiiiiiiieiieieees e e et tes et eae st e e sese e es e et eseesastesesassesessan et eseseseesasenans cb(1)
program, generate for lexical analysis of text lex(1)

program, get particular addresses associated with .. . end(3C)

Program, get Siz€ Ofcccveevriernieniiirieeeere e ... size(1)
program, locate source, binary, and/or on-line manual page for whereis(1)
program, maintain, update, and TeCOMPILEccccoveeieriiriereriirieerteeee et e s stestesteeseeessesaennnas make(1)
program, overlay onto existing process and execute ... sh(1), exec(2)
program, run immune to hangups, logouts, and quits nohup(1)
program, set up signal handling fOrccccceeininireririireicreir e signal(2), ssignal(3C)
program verification assert(3X)
provide semaphores and record 10cking 0n filescccecuiiierieeiiieerieirceri e lockf(2)
provide truth value about your ProCessor tYPecceererveeieceeriereetieeerteeeesaeecreeresaeessessessessassnens machid(1)

Permuted Index

pIS ... e Drs(1)
DS ettt ettt et e bbb et et h b e e e e a bt e b e e Rt eh e e e e aa e A s ekt ease bt e R b e n bt e b e e et e e he e s essetebbaeneanteeneennes ps(1)
pseudo-random NUMDEr GeNeratorccccoviiriiiiiiniiniiieeiet ettt drand48(3C)
PSEUAO-TANAOM NUINDETS ..euviiiieriierieeieniieeesticiesseeestetastesstesseeseessesaeessaessesssessesssesssessessessensenns drand48(3C)
pseudo-terminal driver . pty(4)
PEFACE wortititiietit ittt ettt sttt st h ettt h e bea e sttt e et ptrace(2)
Pl cereetieiet ettt h ettt h et ettt e he s b ba s e et e e ae et ea b e e a b e st e e naeehbe st ea b e e bt e et e e s e eaaanreeten pty(4)
public UNIX-to-UNIX file copy uuto(1)
push character back into input stream . . ungete(3S)
PULC wovcriitiiice et ... putc(3S)
putchar pute(3S)
PUBEIIV ottt ettt ettt s et ettt et e b e st e be s e b et e s b ess s ennebete st eae s esenennae saeberes putenv(3C)
putpwent putpwent(3C)

PULS ittt

PULW i e

pwek ...

PWA ottt ettt ettt ettt ettt ettt e b e et a bbbt e st et e e b eas e e b e et e beeae et et et enne et eneeneesabenreresbereas pwd(1)
PWALD ottt sttt st be e passwd(5)
Pythagorean theorem function . hypot(3M)
GSOTT eviutirtiittiteetteete ettt et e st eeteestteaaesseaesaeeseeseesbasseasessbesstesaeaaessbesseassenseensa et s ensaensesanesertebeenteaseens qsort(3(C;
QUETY 1eveeeeeutnnteteteeeseeeeiiuaanreee s e e ettt eessaasaasaeeeeeessbnaaeee e sasabaeabeeeesaeesabbaaaaesaeesee et abananaseteeeestebaeeaeeenans query(1
quit character, desCription Ofccoeeiiiiiiiniiii e tty(4)

quits, run command immune to .. . nohup(1)

quoting, as used by the Shellcocceiiiiiiiiiiiiiiiicce et sh(1)
TANd .o .. rand(3C)
random number generator . drand48(3C)
random NUMDbEr Generatorcc.coceeeverirrieneererireneesireenieenns ... rand(3C)
randomized library /archive, table of contents format descriptionccceccvvveviviinicineiiniiniinenes ranlib(5)
ranlib.h, description Ofcccoeciiiiiiiiiiiiiiiii e e)
raw interface to disc, description of .)
raw mode, description of raw mode interface to magnetic tapecccoceiiiiiniiiiiiiiii mt(4)
raw mode, description of raw outPUt t0 PIINEET c.cceveirirriirrerieniirterieeeie e eesre et ebeseae e sbeeaaerens Ip(4)
TC. ateteuitesescs bbb e e b e bt e b d e h bbb bbb bR e e b s e e se s bbb et b et et be st e b bre(1M)
TRAA 1ovutiiiitiiiice ettt ettt b e s b et s e beene sh(1), read(2)
read and format data from buffered open fileccccoeviiiiniiiiniiiiniiic scanf(3S)
read and format data from standard input scanf(3S)
read and format data from string scanf(3S)
read character from buffered open file e gete(3S)
read error indicator 0N OPEN fIleccceeueiriiieririnieirieieetee ettt st ferror(3S)
read from a file USING DUMFETS ...cveeveeviiriiriiniriereitintieeete ettt sae e teeaseteereteeeaeereeanens fread(3S)
read from filecooeevrnennee. .. read(2)
read from standard INPUL .o..cocooveviiiiiiii s sh(1)
read operation, reposition NEXtccccvveiviriiiiiinii e fseek(3S)
read password from /dev/tty or standard input getpass(3C)
read text in convenient chunks on soft-copy terminalcccoeiviiiiiiviiicniniiciiiii s more(1)
read word from buffered open filecccoiiiiiiiiiiii e gete(3S)
read-ahead, set number of buffers allocated to uconfig(1M)
TEAAONIY .eviiiiiiicii bbb sh(1)
read/write file pointer, move (seek) .. lseek(2)
real group ID, get for process getuid(2)
real user ID, get for process getuid(2)
1realloecoevviiiieiiniieneene malloc(3C)
real-time priority, change O TEAAcceevierieiiieeiiieteete ettt ereestees b teaesseesbesaaeneas rtprio(2)
real-time priority, eXecute Process Withccccccivvierieiiieieniiciieceee st eae et s e e aeseaeneens rtprio(1)
1eblock taPe fIle ..uoiuiiiiici e dd(1)

Permuted Index

TEDOOE overitiietetiet st b e reboot (1M)
TEDOO 11eueeiiierctcii ettt ettt b bbbttt aen s reboot(2)
re-boot operating system after shut-down .. . stopsys(1M)
reboot SYStemccoceviiiiiiiniieniee .. reboot(1M)
1eb00t the SYSEEIIL ..ooviiiiiiiiiiiii e reboot(2)
record locking and semaphores on filescc.cocereeiceenene. lock{(2)
record login names, login times, and tty names for user .. utmp(5)
regexp.h, desCriPtION Ofcoiiiiiiiiiirie ettt et s seeee regexp(7)
regular expression compile and match TOULINESccvieeeeiirrierieiieeiriere ettt et eeeenes regexp(7)
relational database operator join(1)
release blocked signals and wait for INEETTUDE ...eoevviriereiiiieree e ees sigpause(2)
release Command Set 80 cartridge LAPE ...ceeivevieirirerieieiee ettt ettt s saenee teio(1)
release number, get current revision(1), uname(1), uname(2)
relocation bits, remove from ObJECt fileececuiireririiriiriinee et strip(1)
remind you when you have to leave leave(1)
remind you when you have 10 16avecccviiiiiiiiiiineiecce e leave(1)
FEMINAET SEIVICE .vvviiirieeiiiiiititii bttt eneae s calendar(1)
remote system, execute work requests on uucico(1M), uux(1)
1emOVe & AIFECHOTY IO w.vevivieiiriiieieiiti ettt ettt ea s ne st ae e rmdir(2)
1emove & LIF fIIE .ooioiiiiiiiiiiiiiiii ettt lifrm(1)
remove backing store devices .. vson(2)
remove BIF files oF direCtoriesc..ccoccoiviieiiiiiiiiiic bifrm(1)
remove delta from SCOS fllec.ccviiiiiiiiiiniiiec e ettt s rmdel(1)
remove duplicate lines in file uniq(1)

remove extra new-line characters from file rmnl(1)
remove files or directoriesccocecerriiiiinns rm(1)
remove link to file hnk(lM), unlink(2)
remove message queue . woeeee iperm(1)
remove multiple line-feeds from output ettt ettt ettt e b et h e e nheebe e et e bt et e s e e b ebeeteereeb b e entaenres ssp(1)
remove nroff/troff, tbl, and eqn cONStIUCESeevvvveveeereiinierereieeerieereeeene deroff(1)
remove selected fields from each line of a filecccoooeeiiiiiiiiiii cut(1)
remove selected table column entries from fileccocoiiviiiiiiiiiiii e cut(1)
TEIMOVE SEINAPNOTE SEE .eevviiiiiniieieiriiriiestiritesteetette st e bt s ee et et e eatesteebastesbesatesteesesseassessessasssensansseasen iperm(1)
remove shared mMemMOTy Idocoiiiiiiniiiiiiiii s iperm(1)
remove symbol table and relocation bits from object file strip(1)
rename LIF fIles ...coooiiiiiiiiiiiiccc et lifrename(1)
repair file system INCONSISTENCIEScciiiiveiririirieriiiier et fsck(1M), fsdb(1M)
report inter-process communication facilities statuscccooecviiiiiiiniiiie ipes(1)
report number of free disc blockscccerurnueenee. .. bifdf(1)
report CPU time used clock(3C)
TESEIVe 8 tEIMINAL ...ooiiiiiiiiiiiiii ittt sttt st eb ettt b ettt naeas lock(1)
reset error indicator on open file .. . ferror(3S)
RETURN ..cccooviiviineenienienieenne .. regexp(7)
TEVCK curtitietiie ettt revek(1M)
reverse line-feeds and backspaces, interpret for nroff(1)c.occeveviiiniiniinininiiin e col(1)
reverse previous get(1) of SCCS file unget(1)
TEVISION 1uveutititiii ettt et s bbb st b e b eb et revision(1)
revision information, get HP-UXccccooiiiiiiiiiiiiiiiiiiicie e revision(1)

revision numbers, check for HP-UX files . . revck(1M)

TEWINA eoveeveveeriiineeriree et ... fseek(3S)
TEWINA 8 FI1E ittt ettt et ee ettt ee e s neens fseek(3S)
rewind group file getgrent(3C)
rewind magnetic taPe ...t e mt(1)
rewind password file getpwent(3C)
TID ¢ttt ettt ettt b e bbbt e h et b bRt Sh e bk €S at b e bt e b et e ke s b et en b e st et eetebeebe b ereeheebebebaneeneeteentane rm(1)

Permuted Index

TINATL ceeutitiiiietc e st mail(1)
rmdel rmdel(1)
TINAIT vttt ettt s bt b e st at e b e b et b e b e s e et et et s bt e neeseeaeente s e neesen rm(1)
rmdir rmdir(2)
TINL oottt e bbbttt e b ettt e b e saes rmnl(1)
TOIMAIB ..uveviutevetirtntesteteneteteseateaesteseestsseuantsseseseeseses st es et s eseneesassssesenes s et esenterasenasebeseneesesesensesennan romang(7)
root directory, change for duration of command chroot(1), chroot(2)
root volume, mark/unmark volume as HP-UX root vOIUINEcccocoerivuiirveeierienecnmnienennaenes rootmark(1M)
TOOBIIATK 1oveuttitetetteteteet sttt et et e te e eeeae s e st e e e st et e eaeas s e s e s aseess e s ess et esseasssessesseetessensenseseasssens rootmark(1M)
TEDIIO ottt etttk e b ettt s b eb ettt sh e a ek s be e b st et eae e rtprio(1)
run a command at 10W PIIOTIEY o.eoveoveveiiiiirieieieiei ettt nice(1), nice(2)
run a command immune to hangups, logouts, and quits nohup(1)
run daily accountingccceceviivviiniienneniinenneene . runacct(1M)
TUNACCt ovveevrviienene . runacct(1M)
CPU time report clock(3C)
CS/80 cartridge tape SPECIal flEccviecieriieeieriiiieieeie et ese et te st ee et ettt te et beeaseeraeneens ct(4)

GPIO routines (device I/O library) gpio_*(3I)
HALGOL Drogramsccoceeeeverennes ... opx25(1M)
HP-IB routines (device I/0 IIDLATY) ..cccooeveirieerieeririeiisieeeneeeerese sttt tes st sss s s s hpib__*(3I)
IMAGE database ACCESS ..veuviviruiriiriiiiriiitintentistesie et eiiettete et et ete e st ssesaestesesbessesbeseenseneeseesesbebensesessensens query(1)
1/0 routines (device 1/0 library) io__*(3I)
KERMIT-protocol file transfer programccveiiiiiiiiineieiiie et kermit(1M)
LP Spooler SYSteIm, CONMMGUIEcoivteririiiieiitiniiieeiit ettt sttt sttt be sttt e et ebesneas mklp(1M)

MPE/RTE-style message catalog support catread(3C)
MPE/RTE-style message catalog support catread(3C)
UUCP SYSteIM SNAPSNOb weeveeiirieeiiitiectietecete et ee ettt reeete et e eaeeseeaseesaebesaeseessesssesessaensessnan uusnap(1)
XMODEM protocol file transfer program . umodem(1M)

XMODEM protocol file transfer program . umodem(1M)
SACT 1vettiueeti it e eb e bttt h bt e bt bbb bt ettt bbbt b ettt er e aa et eas sact(1)
SDIK ottt et h bt b bttt et a ettt brk(2)
scan text for pattern and ProCessccciiriiiiiiii awk(1)
scanf scanf(3S)
SCCS, ask for help CONMCEINING ..c..oviriiiiiteriiierteit ettt st saes s ese e se e help(1)
SCCS file, change delta cOMMENTALY Ofccccoiviiiiiriiiiiriiiicei e cde(1)
SCCS file, check for validity

SCCS file, compare tWo VErsions Ofc.coeviiiiiiiiiiiiiirieieir ettt scesdiff(1)

SCCS file, create delta (Change) fOrcceeiiiririiiiiecee et delta(1)
SCCS file, description of SCCS file format ... scesfile(5)
SCCS file, get identification information from what(1)
SCCS file, get version ofccceceevviiviiiinnenne .. get(1)
SCCS file, print and summarize prs(1)
SCCS file, print current editing activity for .. . sact(1)

SCCS file, print delta summary of get(1)
SCCS file, remove delta fromcccciiiviiiiiiii e rmdel(1)
SCCS file, reverse previous get(1) Ofcocivereiiiiiiriicieese e unget(1)
SCCS files, create or change parameters of admin(1)
SCCSAIT 1veviriiti scesdiff(1)
schedule commands at specified date(s) and time(s)c.cccceouvvviviiiniviciiiiniiiiiceiies at(1), cron(1M)
screen handling and optimization TOULINESc.ccevieriiiiieiriieieiee et ev e curses(3X)
SDF boot area, copy OS from one or more SDF boot areas to another . .. oscp(1M)
SDF, deSCrIPEION Of ...c..iuieuieiiieiietiiieiecet et ettt st st st b et ebe st b e b dir(5)
SDF, deseription of SDI VOIUINEcccoiiiriiriiiiiiiciiietetiet ettt sttt ss et nnenes fs(5)
SDF volume, format, initialize, and certify sdfinit(1M)
SAANIL wveiiieieicie e sdfinit(1M)
search an ASCII file fOr PALLEITL ..icvievuiiiiecieetieiecieei ettt ettt e e st e b e s beeresseesaesaensenaes grep(1)

-31-

Permuted Index

search tables, Dash-Codedcccoerceemmciiiininiciiee s hsearch(3C)
SECUritY CONEIOl, AIALUD .eevveeverreriiieeriieiirrtes it eeretetesae et ete e sbesseessesaeessassasssensassessaassansassseenserseens dialups(5)
SEA ittt e e e sed(1)
seek t0 new POSIEION IN flececviuiveuiiiiiiiiiiir s Iseek(2)

segment length, modify memvary(2)
segment, lock/unlock for process memlck(2)
segment reference patterns, inform operating system about memadvise(2)

select select(2)
select/reject common lines of two files comm(1)
semaphore control OPETAtIONScceeveievinriiiriieciiiiiee s bbb semctl(2)
SEIMAPNOTE OPETALIONSeveveeteuirivereeriieretierietesteiescteset et estesesesteseaesesss e e sesesaseseneaseseneesestsseessnenees semop(2)
semaphores and record 10cking on fllescccc.cerureriiiiiniiiiininicic s lockf(2)
SEIMAPROTES, BEE ..eoviiiriiiiiiiiiici it b et s a e r e e semget(2)
SEIMCEL 1.vveiiiirctctt e semctl(2)
semget ... semget(2)
semop semop(2)
send mail to users or read MAlccovviinieiinciiiic s mail(1)

send signal to all user processes . killall(1M)

ST vttt e et e e R SRR et e e e b e b b e ens sh(1)
set current signal mask sigsetmask(2)
set group access list setgroups(2)
set name of host cpu sethostname(2)
set options for terminal POTtccocecvieiiiiniiniiiiii e stty(1)
set or change real-time PrIOTIEYcoccecirieriiererierieeiere et sreeseetreraeseberbeseesiteseae s e esnesstssasseesnnee rtprio(1)
set or print name of current host systemccovviiiiiiiiniiiin hostname(1)
set printer options
set process’s alarm Clock ... alarm(2)
set special attTIDULES fOT GTOUD ..vevvievierieereiriieieiiiereerecreeeestesseessesreeaasssesaessesseeseensenseernennsas setprivgrp(1M)
set system parameters uconfig(1M)
set tabs 0N & termINal ...t tabs(1)
set the modes Of & LErMINALccouiuiriiiiiiiiiiiiiic et ar e getty(1M)
set time and date date(1), stime(2)
set user and group IDs ... setuid(2)
setbufccocervenene . setbuf(3S)
SEEGIA veviveveririrteterirtee ettt ettt a b e nesenn setuid(2)
SEEETEIE eeuvruerieerterenirierisentereesereseseesenesesesesaesesnesesesensessesensesenes getgrent(3C)
set-group-ID bit, set/clear for file chmod(1), chmod(2)
SEEETOUDS vvevvteruieruensirreeeeetestestestessestessesseesasssessasssessaessesssensensessssesesssessannsessessessassesssessessaenses setgroups(2)
SEEROSENAIME .ouvviviiiiicict et a e sethostname(2)
setitimer ... setitimer(2)
SEEJIID wvveiieniieititiitect sttt st e bt e e et s et ebe e ete e bt e et e b e bt s ae bt e e e et e a s e b ee s e he e b e e et eentesresueas setjmp(3C)
SEEKEY weverveutenieteteeiteset e et et et eteste e e e te st e e e e st b be b s b et e b e se e s et e s e ease s e se st e s e tesbe e ebe et beanesbeeanene crypt(3C)
setmnt .. setmnt(1M)
setpgrp setpgrp(2)
SEEDTIVETD «evervirterterierertesterieseesessesteseeseeseesessesssssesessessessessessessesessassessesesssesessesassessossasensensasaans setprivgrp(1M)
setprivgrp . setprivgrp(1M), setprivgrp(2)
setpwent getpwent(3C)
settimeofday settimeofday(2)
SEEUIA wevtiteiict ittt ettt ettt et e h e bkt b e e b b et e bttt eb et st e st et et s st eae setuid(2)
set-user-ID bit, set/clear for fleocviiiviiniiiiii e chmod(1), chmod(2)
sh(1)
shareable, mark or unmark program COAE Sccoceevierirrieririiirierineereeeerereeee et ens chatr(1)
shared memory control OPEIALIONScccceveriieeriirierrieiirtene ettt e ee e ree s snesessaesanesbessneaenes shmetl(2)
shared memory operations shmop(2)
shared memory segment, get shmget(2)

Permuted Index

SHEIL e e bbb s b b aee sh(1)
shell, change default 10INc.ccceceiriirieiiiiniiciiiii chsh(1)
shell command, issue from program system(3S)
shell, command, Personal Applications Managerc.ccoveueuenene pam(1)
shell, Input COMMANAS £0 .evcuviuiiuiiiiiieriiieieecicte et e sh(1)
shell procedures for accounting acctsh(1M)
shell programming lANGUAGEco.eoveeeeiiriirieeiiitieteenee ettt ettt sr et e st ae bt en e sae e sh(1)
shell scripts, system InitialiZatIoNc.eccvveririieiiiiinnicei e bre(1M)
shell, set/clear flags to

SHIFE 1ot et s bbb sh(1)
SHINCEL 1oveiiic e e shmetl(2)
shmget shmget(2)
shmopccccvvviivinenns . shmop(2)

show group memberships ...
shut down operating system with optional re-boot

.. groups(1)
. stopsys(1M)

shutdown ... shutdown(1M)
shutdown status of specified file SYStEINccceeviiirierieireinircee e fsclean(1M)
SIEDIOCK ettt ea e sigblock(2)
SIET DI ettt ettt ettt b ettt et et s s e bbb st e be b et bt b e b b s et e Rt e Rt eh b e e bt saeene e login(1)
signal signal(2)
signal facilities, software sigvector(2)
signal, force action associated with signal t0 be taKenccecvivieeerierrcrniiienienirensieereneeseneens ssignal(3C)
signal handling for program, set uUpc.cccceeveeruenne. signal(2), ssignal(3C)
SIENAL TNASK, SEE 1eveeiirririreeierieerteeiteseet e st te st et ste st e s e esaeteesaesaesseebe s sesaesaansnessessaensaessesnsensensens sigsetmask(2)
signal, send SIGIOT to process ... OO TSROSO abort(3C)
signal, send t0 all USET PrOCESSEScievireeriiiirietiietiete ettt killall(1M)
signal, send to process .. kill(1), kill(2), abort(3C)
SIENAL) SEE ETAD FOT ueeeietieiieiiieticitestes et eee e seeeee et eeae et e st e et e e e et e see e s e s ee e e st e s anseestaseenae s e enseseens sh(1)
signal stack space sigspace(2)
signal, suspend process until receipt ofoceeceevrerierciinieneneenieiee e pause(2)
SIGNEAM evveeeeeirereeer e gamma(3M)
signs, make uSing 1arge 1ELEETScccovivviriiciiiiircciei e e banner(1)
SLEDAUSE cuvenvinteuieteieiteseet ettt et ettt et et e e st e be b et bbbt b b et e et st a et RE s R b ea st b enn sigpause(2)
sigsetmask . sigsetmask(2)
SIESDACE 1uveveuverrerereieteseiesseeeeseseeseasesessesesessesseseaete s es e s seseses bt et et s anesae b b e s e bete st beRe et eseebenenteesenenens sigspace(2)
SIEVECEOT wevveiiiieiiiteetiitie ettt ettt e e et et et ettt eae e ae bt e e e s b e b e saeae st e sbe bt e sbeesneeaerbtesnees sigvector(2)
simple text formatter .. adjust(1)
sin ... trig(3M)
sine function . trig(3M)
sine, hyperbolic sinh(3M)
sinh . sinh(3M)
size ... size(1)
$ize Of an ODJECE fI1E ...evviuieeeieieiiiec et size(1)
sleep sleep(1)
sleep . sleep(3C)
] OO O OR RS UORON slp(1)
snapshot of the UUCP SYSEEIMcccereriirueriiinieeienieneerieresee e enreserestteneessesesess s senss s sbesnsessssseens uusnap(1)
software signal facilities sigvector(2)
1 o OO OO OSSO PO OOOR RO OOORROO sort(1)
SOTE ALGOTTERII vttt sttt gsort(3C)
sort and/or merge files sort(1)
sort, topologicalcceoeuiinnenn. ... tsort(1)
source code, locate for program whereis(1)
spaces, convert to tabs, and vice versac.ccoceeeeene . expand(1)
special characters in terminal interface, deSCription Ofccccovieeeeeeiiricereniierieere e eereeeeeresesnenne tty(4)

-33-

Permuted Index

special file, create block/character/networkccceevvreeveuerreeecnennne mkdev(1M), mknod(2), mknod(1M)
special file, create fif0cooiiiiviiiiiiie e mknod(2), mknod(1M)
special file, identify for file name on mounted file systemcccccooevmiiiininiiiiiniic devnm(1M)

special file, modem CONtTOlcccviiiiiiiviiiiiiiiiience modem(4)
special file, CS/80 CArtridge tAPEcoceiriirieiiiiiiiteieietei ettt e ct(4)
special file, system “bit BUCKet”ccocoiiiiiviiiiiiiiiii e null(4)
special files, perform functions on loctl(2), stty(2)
special files, utilities used in creating special filesccooviiiiiiiniiiininiiic mknod(5)
SPEIL ettt e b e b e et a e spell(1)
SPEIIL Lttt etk he bbbt et sr et ae bt e e nes spell(1)
spelling errors, find .. spell(1)
SPEIIOUL ettt ettt st ae e ene spell(1)
SPLIE ettt ettt et ettt et e et a et neenenten split(1)
split a file into pieces ... split(1)
split operating system into one or more ordinary filescecceeereeeeeerieerienrierieneereseseeeeeseennaenees oscp(1M)
spool directory clean-up fOr UUCDcooeviiiiiiiiiiiiiiiiici et uuclean(1M)
SPIINtE eeeriirieniineee e, ... printf(3S)
sputl sputl(3X)
1510 |« AT ... exp(3M)
square root function . exp(3M)
srand .. rand(3C)
sscanf . .. scanf(3S)
ssignal ssignal(3C)
SSD trteureertie ettt et b ettt a e eR s e et e bt e e At et e e naeas s e st e eseebe st eab e e et eabeanben b e et e et eesheenbaensaentenseenneene ssp(1)
stack size, specify size in bytes uconfig(1M)
standard input, copy one line from to standard OUDULccecveveeerienieeiienieiieseeeere e line(1)
standard Input, TeAd frOM «......coeeciiiiieeiiie ettt sttt b e b s e te e s e ae e b e saaest e anenaaessesanens sh(1)
standard inter-process communication package . . stdipe(3C)
start character, resume output, description ofc.cccciiiiiiminiiiiniii e tty(4)
SEAL 1ot e s a e stat(2)

stat(2)/fstat(2), description of structure returned by these calls ... stat(7)
state, defining system states for init(1M) inittab(5)
state, initialization of system state and processes . . init(1M)
stat.h, deSCription Ofcooiiiieeiiiiir e e eneen ... stat(7)
status flags, get/set for file . . fentl(2)
status, get for filecoocvviniiniiniiiiienen, ... stat(2)
status, inter-process communication facilitiescccoovieriiiniiiniiiii e ipes(1)
stdio stdio(3S)
stdipc . stdipe(3C)
SEED eventtereente ettt et ettt ettt et ettt et e et eeua et et e e e et e s e eaaaste s aanseateeereesaen s e eaaaase b et eenteenbenseanseentsarsenn regexp(7)
sticky bit, set/clear for fllecccovuiireriiiiieiircc s chmod(1), chmod(2)
SEIIMIC ©ouvetieteeietce ettt stime(2)

stop character, suspend output, description Ofcccecveeiiiereeiinireee et e tty(4)
stop operating system with optional re-boot stopsys(1M)
stopsys stopsys(1M)
streat .. string(3C)
strchr .. string(3C)
SELCINID +euviiutieniitint et e e sttt et e et ettt e st e st e saees s et s e st eestessaase e sensaenseessaessensessaesseseesbeseteentannsesnansaas string(3C)
strepy string(3C)
strespn string(3C)
stream, €l0se O fUSH ...oiiiiiiiiiiiic et fclose(3S)
Stream teXt eAItOriiiiiiiiiiiiiiiii e sed(1)
string collation, non-ASCII, used by NLS . nl_string(3C)
SELITIZ, COPY t.verrietieiteeiei ettt ettt et ettt te s besab e s be st e st e ebae st e basetesbesaaeesesseansasaeensensaeseensanane string(3C)
String, get 1ength Of ...coccooiiiiiee e ettt naes string(3C)

Permuted Index

string, print formatted data IO ...ceeeeeeerieriieicee e e printf(3S)
string, read and format data from scanf(3S)
string, read from buffered open file gets(39)
string, search contents of file for specifiedcccoieiviiiiiiiiiiiiiiii grep(1)
string, search for particular character Inccccoviiviiiininiiii string(3C)
string to double-precision integer conversion .. . strtod(3C)
string, write to open file or standard OULPULcccovereriiiiiiniiiiniieeeee e puts(3S)
SEIINES, COMPATE EWO ..oiiiiiiiiiiiiiiiiiiiiiiie et ee e st seabee e s sabe e e asbabeesaneeeas string(3C)

. string(3C)
. strtol(3C)

strings, concatenate two
string-to-integer conversion ...

SEIID wevvirerieiiicc e . strip(1)
strip multiple line-feeds from output ssp(1)
strlen .. string(3C)
strncat ... string(3C)
SEITICIND oottt string(3C)
SETTICDY voveuerrenireseetnrere ettt string(3C)
strpbrk .. string(3C)
strrchr string(3C)
SETSPIL wvtittetieireetettiteettete et e st e et e esbastaestasaaesbe st eesaeestesbaen b e benbeeh s et e b e beehe e nheesben b e eme e be s st en e et sraeteeen string(3C)
strtod strtod(3C)
SETBOK - euteteete it et ettt ettt ettt ettt ettt s et ekt e et er e et easeae et et easebessastereebeeaeete s e ese s esenbenseneens string(3C)
SEIEOL ettt ettt ettt b e b bbb bbbttt h et te e s eaeete b enteae e st beesebeeseebennes strtol(3C)
structure, definition of structure returned by stat(2) and fstat(2) ... stat(7)

Structured Directory Format, description of . dir(5)

Structured Directory Format, description of SDIF vOIUINEccevieririerieiriiienieiiieeienie et eeieereeees fs(5)
Structured Directory Format volume, format, initialize, and certify . sdfinit(1M)
stty stty(1)
stty stty(2)
SEEY VO et sttyve(4)
1 OO OO O PSR OU PP RPN su(1)
summarize and print SCCS file . prs(l)
superblock, description of superblock in SDF VOIUINEcccuerveriereieiirieseinieniteieiieecereeeee e fs(5)
suspend process execution for interval of tmMecoc.eeeerieereiieienierieieieeeeeeeee sleep(1), sleep(3C)
suspend process until signal pause(2)
swab swab(3C)
swap bytes swab(3C)
swap device, addc..ceveerenrenennne. swapon(2)
swap time, set for virtual segment .. . uconfig(1M)
SWAPOIL eveenreveenrerieeaarsensenneeseans swapon(1M)
SWAPOIL vviereriniirisisrititistesetere e eae st es et es et a et ... swapon(2)
swapping and paging enablecccccevviereiiinieniieee e . swapon(1M)

symbol table, extract entries from executable file’s symbol table (name list) ... nlist(3C)
symbol table, print from object filecccocoiiiiiiiiiiiii e nm(1)
symbol table, remove from object fileccoceiiiiiiiniiiiii s strip(1)
symbols, examine execution profile for .. prof(1)
SYTIC 1oututitiiteettetest et et b et et b e e he et s e a bbbt bt bbbt bttt ettt b et e bt nentene sync(2), sync(1), syncer(1)
SYIICET -veunvutemetenertaseseseseseuesessesentase st esaseseeseeesestasenen et e ae e e sesen e s esene s eseRen b et eRe et ese st et ene et ebennreetenenen syncer(1M)
sync, automatic periodic syncer(1M)
synchronous I/O mMulbIPIEXING ..c.eoververieriririiiiitieieiet ettt ettt sttt ettt s ben e snesae s select(2)
SyS—errlist ...coooovrereieenne. ... perror(3C)
SyS_nerr perror(3C)
SYSEOIM .eevnviiiiiieiiiiieicie et .. system(3S)
system activity, terminate all current activity . shutdown(1M)
system calls, error Indicator fOrooiviiiiiiiiiiii e errno(2)
SYSEEIN COMIAGUIATION ..veruiriiriiiiiiiienteit ettt sttt et es e seeesset e esbesbeeseesnesaeenne config(1M)

-35-

Permuted Index

system error logging file errfile(5)

System III compatibility for magnetic tape, description of mt(4)
system initialization Shell SCIIPESccoviviiiiiiviniiiere e bre(1M)
system name, get . revision(1), uname(1), uname(2)
system names, list of those known to uucp uuep(1)
system parameters, set or list uconfig(1M)

system reboot reboot(1M)
system reconfiguration uconfig(1M)
system state, defining states for 1n1t(lM) inittab(5)

system state, initialization of weee Init(1M)
table of contents format description for archives/libraries ... ranlib(5)
table of devices mounted by mount(1M) mnttab(5)
table of mounted devices, create setmnt(1M)
table search, binary bsearch(3C)
tables, format for NTOF/ETOMccuiiiiiiiieieie ettt tbl(1)
tabs tabs(1)

tabs, expand to spaces, and VICE VEISAcccccieveiiiiiiiiiveiiiieninieiienis et expand(1)
tabs, put tab specifications in text files . fspec(5)

tabs, set on terminal tabs(1)
tail .. tail(1)
tan trig(3M)
tangent function trig(3M)
tangent, hyperbolic . sinh(3M)
tanh ... sinh(3M)
taPe, ATCHIVE fIES OIL .u.iruiiiieiiireeiet ettt ettt bt e st e sa e e st a e s ne tar(1)

tape, Command Set 80 cartridge utility
tape density, how to set for magnetic tape
tape, description of magnetic tape raw interface and controls mt(4)
AP fle ATCHIVET .vvvveviiieieteeeietcieieiet ettt ettt se et sb et st saenae s .. tar(1)
tape file, convert, reblock, translate and/or COPYc.cvvvveriiiiiniiniii e dd(1)
tape initialization mediainit(1)
tape, manipulate and/or position mt(1)
tape, unpack/extract files from Command Set 80 cartridge . upm(1)
tar(1)
tbl(1)

tbl, nroff, troff, eqn constructs, remove from text . . deroff(1)

teio . teio(1)
tee ... tee(1)
temporary file, create and open tmpfile(3S)
temporary file, generate name for tmpnam(3S)
BEITIICAD weeveverreenierrenretereseraesiasesetesesesseseseseenensesesnns . termcap(3C), terminfo(5)
termcap description to terminfo description, CONVETtc.ceceviniiiinimieiiinicnnininniieinnens captoinfo(1M)
terminal capabilities, database for vi editor terminfo(5)
terminal capabilities in terminfo(5), access . termcap(3C)
terminal commands, description of ioctl(2) system call cOmMmMANdsccocevevvieriviimneiiineiie e tty(4)
terminal, database listing terminal type for each port . ttytype(5)
terminal dependent initializationccooveievunnnne . tset(1)
terminal, description of general interface to tty(4)
terminal driver, pseudo- pty(4)
terminal emulation, asynchronous aterm(1)
terminal, establish communication with terminal for login getty (1M)
terminal, facilitate viewing of continuous text on more(1)
terminal, find baud rate of terminal during login process getty (1M)
terminal flags, mapping between pwb/V6 UNIX and current HP-UXcccoccciviinnnniinnnniiniiecnn, tty(4)
terminal, generate file name for . ctermid(3S)

S \\v

Permuted Index

terminal, get path name of ttyname(3C)
terminal, get path name of user’s tty(1)
terminal input control, description of tty(4)
terminal interface, generalcocceeenene termio(4)
terminal interface, version 6/PWD-compatibility . sttyv6(4)
terminal, permit/deny messages toccoceeuune .. mesg(1)
terminal screen, clear clear(1)
terminal screen handling and optimization routines curses(3X)
terminal, set options for stty (1)
terminal, set tabs oncccceceevciiennene ... tabs(1)
terminal, set type and mode 0N I0ZIN ..ccccvivveeiiiiiieeierieeseesteeet e seeseesbee st e s ae b e sreesaaaeseeeneens tset(1)
terminal, test file descriptor for association w1th ttyname(3C)
terminals, list of recognized terminal NAMEScccciiviviiiiiiiiiiicic e term(7)
terminals, list of supported terminals in terminfo(5) term(7)
terminate a process kill(1), sh(1), exit(2), kill(2), abort(3C)
terminate all users’ processes shutdown(1M)
EEIININTO COMPILEE «.vovvriereieriieeereete sttt ettt b ettt eb et en et eb et be s erenese st saasaenes tic(1M)
terminfo database ACCESS ...ccciviiviiiiirieiiie s tput(1)
terminfo description from termcap description, convert captoinfo(1M)
termio termio(4)
L] RPN sh(1), test(1)

test conditional expressions ...
text editor
text editor, database of terminal capabilities for vl

sh(1), test(1)
. ed(1), ex(1)
terminfo(5)

text editor, stream sed(1)
text editor (variant of ex for casual users) . . edit(1)
text editor, visualccceeene .. vi(1)
text, facilitate CRT viewing of continuous . more(1)

text file, put format specifications in
text, find spelling errors in
text format specifications, put in text file
text formatter
text formatter, simple ...
text formatting, description of man macros
text formatting, description of mm macrosc..ccoeeen.

text formatting, remove nroff/troff/tbl/eqn constructs from text
text, generate programs for lexical analysis of
text pattern scanning and processing language .
text, print using mm macros

tgetent

termcap(3C)

tgetflag termcap(3C)
tgetnum termeap(3C)
tgetstr termcap(3C)
BEOLO weeveereeeiieriene sttt ... termcap(3C)

three-way differential file COMPATISON ..ecvivveevvieiiiiieeririieieieseereeeiebestt e eteste s astessesveseesseenetesnennes

time .oevveirieennes time(2)
time a command time(1)
time and date, convert to ASCII string ctime(3C)
time and date, get more precisely ftime(2)
time, corrected for daylight saving time and time zone ctime(3C)
time execution of a process and its child processes times(2)

time, get seconds since 00:00:00 GMT, January 1, 1970 ..
time, get/set

time(2)
gettimeofday(2)

Permuted Index

time, print elapsed user and system time for ProCessc..ccccvervieveerinieniniinneeneeeeice e sh(1)
time, set and/or Printcceceveeeneeinienenencinineenn date(1), stime(2)
BIINE B0 LEAVE ettt ettt e st e b b ere s b n e as leave(1)
time zone, time corrected forccecevvrreerrrrenene. . ctime(3C)
time/date stamps, correct those on wtmp records .. fwtmp(1M)
times ... sh(1), times(2)

BIINZOMIE 1.vevvevereieerireeeesiieseseeteestetes et besesessee st saessse bt b et ebetesesesesesesesesebasesasasesesanesssssssasasasesenssencnn ctime(3C)
BIPHLE «.ceviiinieeteit ettt b et a e s bbbt e st e seebeeb e st e st et bt et e eae b enbe e entenees tmpfile(3S)
BIIDPIATIL wevutetieteerentinieenteetestesttestessaestessaesseessesstessassansaasssssesseessensensessssssansesneessessnessesssesssensessees tmpnam(3S)
toascii conv(3C)
CBOIOWET ettt ettt sttt een et ettt et et b e st eene et b e en et a e enes b s enenen conv(3C)
BOLOWET ..veinieiteeieteete et et et ettt e e et s ae e et e st e s st e s besaesae e saeete st eosesaeensesseseeentesbtenseebeesbe st sensbensensessnas conv(3C)
topological sort ... tsort(1)
touch ..o e touch(1)
BOUDDET eveviverureterieteetiseiesaesessessesesseesaastesessanseseesessessessessesassesesaassessesensessestosaestsberaassensaseesseseeenss conv(3C)
toupper .. conv(3C)
tput tput(l)
tputs termcap(3C)
BT tuteteete et e erteste et este e e et ae e s uae e aa s st e saa e s te s aaraaerae s heeRaeabeeheee s e s ern e e st estesaans e s s been e e heaaeersearsaesaantenneeneesbenaneate tr(1)
transfer files between two systems . uucp(1), uuto(1)
translate assembly JangUAZEc.ccoeiiviiriiiiiiiiiiiic e atrans(1)
translate characters during copy from standard input to standard outputccceeveeviivenniinieniiniiannn, tr(1)
translate characters for NLScccoviiiiiiiiiiiniiiiiiccteccreee et csr s s nl_conv(3C) -
translate tape file dd(1)
BEAD wutiuiiiteteitetet ettt ettt et et a et b e e a bbb et b e bt ere Rt e h b et b b s ebeR s bena e bbb e Rt et b e e R R e sn s sh(1)
trap NUMDELS fOr NATAWATEcceeriirieiererirenieiei ettt ettt ettt st et sene et sennesenis trapno(2)

trap, set for particular signal .
trapno e eteeteseeieeiteesaeesteeteestete e eeate teateateereehe et e st es e e a e e st a st ertenbesaseaneeneetsenaes trapno(2)
trapno, report value for last command fallurec..coccoeceeiieviniiienieenencencre e err(1)
trigonometric functionsc.coeeeiniiinnns trig(3M)

sh(1), signal(2), ssignal(3C)

troff, format tables forc.cccoeeeriererricrnenenne . thl(1)
troff, nroff, tbl, eqn constructs, remove from text . deroff(1)
BIUE vttt ettt bbbtk st a b bt n bbb st ne et s ene s v truE(1)
truth value about yOUr PrOCESSOT tYPE ..ecevverrrrerrvieriieiieeeiiirerieesreeseeereeeneeeseeasneeesraeenns . machid(1)
truth valuescococeoevereevennererienne .. true(1)
BSEE ettt et s a e et tset(1)
BSOTE +evvviuiritiiiitiie ettt sttt eae et bbbt ekt ea et es bk n e bRt st benes tsort(1)
BEY vttt e tEy(1)
tty name, record for each user (2CCOUNLING) ..vvvvciviriiiriiiiiiiniiiiiiicice e e utmp(5)
tty port, database listing terminal type connected t0 €achcccccvcevirviiveniiiienieiinecneniieenene ttytype(5)
BEYTIAINE weievvieievetererereieieicreicesese sttt beesee e ses ttyname(3C)

ttyslot

- ttyslot(3C)
tune a file system

. tunefs(1M)

type declarations, data type definitions for system codecccoveerveerierieeeniiniieesirree s types(7)
typedefs for code portability between HP-UX implementations model(5)
types.h, description Ofoceeevveiirieiie i we. types(7)
BZIIAIIIC ..eeveeuieneeenteniirieeteete e st st et e ertenteesbanatesbeessasates s e baebe e besbecaeesbenseebaestenbesseenbesneenbeesbesreebeeaaerens ctime(3C)
ctime(3C)

uconfig(1M)
... ul(1)
... ulimit(2)
umask sh(1), umask(1), umask(2)
umodemn ... SOOI umodem(1M)
umount .. mount(1M), umount(2)
TDAIIIE +.veevererereasenereesesestesssassesesaseesessssesensesensesensssennnsesesesssensssesssensssesenensesenensssenessesensone uname(1), uname(2)

- 38 -

Permuted Index

unblocked disc interface, description of disc(4)
uncompact compact(1)
uncompiler: terminfo untic(1M)
underlining, translate underscores to terminal escape sequence ul(1)
underscores, translate to terminal escape sequence for underliningc.cececceveeeriiiiniicinnnnineiiin ul(1)
expand(1)

unget(1)

.. regexp(7)

ungetc ... ungetc(3S)
uniformly-distributed pseudo-random number generator drand48(3C)
uniq uniq(1)
unique lines, find after comparing two files comm(1)
UNIX/HP-UX system, establish communication with anothercoccceevereinierceereineceeereecneeees cu(l)
unlink link(1M), unlink(2)
unlock/lock process address Space Or SEEMENT ..ccveveviueruererierererreueueaieeeeireaeeereneeeeseeeeseseseseenesenens memlck(2)
unmount or mount file system . mount(1M), mount(2), umount(2)
unpack cpio archives from HP media <. upm(1)

unprintable characters in a file visible or invisible vis(1)
untic untic(1M)
update access/modification/change times of file touch(1), utime(2)
update, maintain, recompile programs make(1)

update super-block sync(2), sync(1)
UDIIL coetiniitiitiniitetest it et teseete st ae et s atea e s b s st es s e b e eb et e st s e e e st eh e s b et e st b et et eh e et e et bt ae b st e ebe et s sene et eenes upm(1)

upper-case to lower-case character conversion conv(3C)
use findstring output to insert calls to getmsg . . insertmsg(1)
user crontab file crontab(1)
user environment, description of environ(7)
user ID, get line from password file with matchingccocoevnee .. getpw(3C)
USET ID, PIIIE veutentiiiiee ettt ettt bttt et b e st ettt ettt et et ebene id(1)
user ID, search password file for matching getpwent(3C)
user ID, set setuid(2)
user name, print id(1)

user name, search password file for matching getpwent(3C)
user processes, terminate all shutdown(1M)
user, SWitch £0 @NOLHErcccciiiiiiiiiiiii e e su(1)

users, print list of current .. who(1)
users, print list of users and their current processes . whodo(1M)
ustat ustat(2)

utilities, Bell Interchange Format file operations bif(5)
UEIME e utime(2)
utmp accounting file, deSCription Ofoociiiiiiiiiiicc e utmp(5)
utmp file current user slot ttyslot(3C)
utmp.h, description of utmp(5)
uucico uucico(1M)
uuclean uuclean(1M)
TUCD cevevvemmsnentsesestteuteesesesesaente s e s et e b seeaese s e b ebe st b s eseeat st s e b et st eb st aa et et eseaea b ebes et e s et beaes et enese s eneenen uuep(1)
uucp command execution uuxqt(1M)
uucp network, monitor activity uusub(1M)
uucp spool directory clean-up ... uuclean(1M)
uucp system names, list of eteeetetetetete—et et et e— ettt et r et et et et ettt e A ae b e bt eae s a et esb et et eaete s e s s eenesenraen uucp(1)
uucp transactions grouped by transaction, list .. uuls(1)
uucp/uux transactions, 1og ofceceeirineene . uuep(1)
uulog uucp(1)

uuls(1)

uucp(1)

-39 -

Permuted Index

UUPICK eeurritetetetiitett ettt et a st ea e a e n et ene uuto(1)
uusnap . .. uusnap(1)
uusub uusub(1M)
TUEO .voviuetitetet ettt et ettt b et a s et e s et et s e s ae st ebe s b et et e st e at ekt e ssest e s ea b e eaess et e aen s e Ren b e e e st ebebasaes e se e enaenes uuto(1)
LUK ©ovievetiatetesseseeaeest et e sb s et b e sae b b cotese st e st e s e e st e b e s ae b e b e b e et st e ae e he b e st e ntes £ e b et e bt b e s e bt te e et e b et e e st enens uux(1)
TUXGD cvevveveneerenensesrsterensesesessesessssesessesesesesessssssesesnssesesessesesessessssesssessssesessesesesensnsesesessnsesessesessssne uuxqt(1M)
VAL e et val(1)
validate password and group flleScoceiveerirurerireeiereeeeeeeite ettt sttt b pwck(1M)
validate SCCS file ...ucoviiiiiieiiiiiiicic e val(1)
values values(7)
values, machine-dependent values(7)
VATATES «vevveureniiniieiesiiniese st eeteeeat et etesestsuesae e e b e b et e st e st sae s es e be et et s et e ae st e R e b e bbb e b et eb st e benteu e e nnenteae varargs(7)
varargs argument list, print formatted output from . .. vprintf(3S)
variable argument list handling facility varargs(7)
VETIfY C PIOZTAIN ..ooiuiiiiiiiiiiiiiitietecit ettt ettt ettt tte st e b et et e st eb e e eentsae st esetasessemeesensessensenne lint(1)
verify Command Set 80 cartridge tAPEc.oceecerieuieeeriiirtetiiceeeeee et e ettt e st re s sseese et eseens teio(1)
verify file system consistency fsck(1M)
verify password and group files pwck(1M)
version 6/PWD-compatibility terminal Interfacec.coeeeeervereeccririrenieininneeiceeeeeceererciereenens sttyve(4)
version name, get for HP-UXcccc.oovmeinniiennentreeteeeteetee e e eee st seaeenseaes uname(1), uname(2)
version number, get revision(1)
versions, compare two SCCS file VEISIONSccccevieviiiiiiiieiiiiiiecitceccec e scesdiff(1)
‘vfork fork(2)
Vi vi(1)
vi editor, database of terminal capabilities for terminfo(5)
VEBW ettt ae e sttt be e eaeae st sa e vi(1)
viewing text, facilitate on Soft-COPY tEIMINALScccecvirrieeeeiieierieetieieee e cee st a e et eera e saesenens more(1)
virtual memory page pool, specify maximum size of uconfig(1M)
virtual memory usage, set or clear fOr Programc..cccccoiieeereniniuenieerieseseeeesesrerae s saeneeseens chatr(1)
virtual memory working set Tatio, Stcoeoueveeuiniirieriiiiieeeicrteeet ettt uconfig(1M)
virtual segment, establish time segment remains memory residentcc.cccceeceeecerreeniencnneenns uconfig(1M)
VES ettt R e e bR bt ae bt ae s s ns vis(1)
VISUBL teXt @AILOT .oivviiiiiiiiiiii et st vi(1)
volume, description of SDF volume superblockcccovveuiiiiininiciniiiiniieccr e fs(5)
volume, format, initialize, and certify SDF volume . sdfinit(1M)
volume header, write LIF 0N flleccccereeirriiiinenieiirieieiesieeeieenieeet ettt ene e lifinit(1)
volume, mark/unmark as HP-UX r00t VOIUINEc.cveveverciemirenrieereenienrieneeiesseaseneseenes e rootmark(1M)
VDIINEE it ... vprintf(3S)
vsadv ... v vsadv(2)
vsoff vson(2)
VSOIL +reveueavenensentsesentesesessoseuessesesessasensesesesessssessssnssentnsesessesesessestesesessasesensesessnsessssnsesessssesasesesensasanenee vson(2)
WAl vt .. sh(1), wait(1), wait(2)
wait for completion of process sh(1), wait(1), wait(2)
WALk @ fI1E ETEE ..ttt bbbt ftw(3C)
wall ... wall(1M)
we ... we(l)
TC toteutrer et r et a bbb bR e s R et h e s e s ket e et et b se et a st er s s b nenes we(1)
WRAL oottt e s what(1)
Whereisc.coevinenincencnen whereis(1)
while 100D, exit from eNCIOSINE ...cc.eouvirierieiiiierere ittt ettt et se st saaeeesbe e sh(1)
while loop, resume the next Iteration Ofccoeiiiiiiiiiiiiiiniiiie et sh(1)
WHO vt ... who(1)
whoami . whoami(1)
whodo whodo(1M)
WOIA COUNE 1ottt et bn s ea b e saan we(l)

TN

Permuted Index

word, read from buffered open file ... gete(3S)
word, write on buffered open file or standard OUEDULccvevverieeeriiriieeriieeste e s pute(3S)
words, count number contained in file we(1)
working directory, Changec.oiriiiiereie e cd(1), sh(1), chdir(2)
working directory, print NAmMeE Ofcccceoeriieiinieiiiiriee ettt e pwd(1)
WIIEC weveeiititeetetice s write(1), write(2)
write character on buffered open file or standard output ... pute(3S)
write current contents of memory t0 diSC ...cocveeveiiiiiiieiiiii e sync(2), sync(1)
write interactively to another USErccociviviiiiiiiiiriiiecc e write(1)

write LIF' volume header on file lifinit(1)

write on a fileccoccoiiininiinnee ... write(2)
write operation, repOSIEION NEXDceeeiiiiireiriiiiiieeet ittt ettt ettt fseek(3S)
write PassWord flle @NEIY ..c.cocoieeeiiiiniiiieiee e e putpwent(3C)
write string to open file or standard OULPULc.ceeeeriirieriereieieeeete et puts(3S)
write t0 a file USING DUTETS ...coeiviiuiiiiiiiiiiii et e e fread(3S)
WIIEE O AL1 USEI'S 1.viuvitiietiicte ettt ettt ettt ettt bt et besten e et ebennen wall(1M)
write word on buffered open file or standard output ... pute(3S)
wtmp accounting file, desCription Ofcoceeciiiiriiiene ittt utmp(5)
wtmp records, convert from binary to ASCILc.ccccoiimiimiiiiiiiiinieiiereeere et fwtmp(1M)
wtmp records, correct time/date SLAMPS ONl ..cc.eeviriiuiieriiiinieinicieteietr et s fwtmp(1M)
WHEIIPAX cevveeiiteiiee e <. fwtmp(1M)
x.25 line, get getx25(1M)
XA et ettt a R st et h et e Rt n bt ea e b et n s e n et et eaeseenene od(1)
F0 e ettt R e s s ea etk e et b st s st eb et eb e st bt st n s e s bessel(3M)
yl .. bessel(3M)
;L OSSOSO TR PPN yace(1)
FIh ettt bbbttt ekt a e a e b etk ae ekt e s e e sttt e bt et b b aeehe st esenn e nenne bessel(3M)

- 41 -

Permuted Index

- 42 -

MANUAL COMMENT CARD

HP-UX Reference

Manual Reorder No. 09000-90008

Name:

Company:
Address:

Phone No:

Please note the latest printing date from the Printing History (page ii) of this
manual and any applicable update(s); so we know which material you are
commenting on

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road

Fort Collins, Colorado 80525

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

HP Part Number
09000-90008
Printed in U.S.A. 6/86

O

=

T

09000-90L57

For Internal Use Only

